Step |
Hyp |
Ref |
Expression |
1 |
|
tgpconncomp.x |
⊢ 𝑋 = ( Base ‘ 𝐺 ) |
2 |
|
tgpconncomp.z |
⊢ 0 = ( 0g ‘ 𝐺 ) |
3 |
|
tgpconncomp.j |
⊢ 𝐽 = ( TopOpen ‘ 𝐺 ) |
4 |
|
tgpconncomp.s |
⊢ 𝑆 = ∪ { 𝑥 ∈ 𝒫 𝑋 ∣ ( 0 ∈ 𝑥 ∧ ( 𝐽 ↾t 𝑥 ) ∈ Conn ) } |
5 |
3 1
|
tgptopon |
⊢ ( 𝐺 ∈ TopGrp → 𝐽 ∈ ( TopOn ‘ 𝑋 ) ) |
6 |
5
|
3ad2ant1 |
⊢ ( ( 𝐺 ∈ TopGrp ∧ 𝑇 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑇 ∈ 𝐽 ) → 𝐽 ∈ ( TopOn ‘ 𝑋 ) ) |
7 |
|
simp3 |
⊢ ( ( 𝐺 ∈ TopGrp ∧ 𝑇 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑇 ∈ 𝐽 ) → 𝑇 ∈ 𝐽 ) |
8 |
3
|
opnsubg |
⊢ ( ( 𝐺 ∈ TopGrp ∧ 𝑇 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑇 ∈ 𝐽 ) → 𝑇 ∈ ( Clsd ‘ 𝐽 ) ) |
9 |
7 8
|
elind |
⊢ ( ( 𝐺 ∈ TopGrp ∧ 𝑇 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑇 ∈ 𝐽 ) → 𝑇 ∈ ( 𝐽 ∩ ( Clsd ‘ 𝐽 ) ) ) |
10 |
2
|
subg0cl |
⊢ ( 𝑇 ∈ ( SubGrp ‘ 𝐺 ) → 0 ∈ 𝑇 ) |
11 |
10
|
3ad2ant2 |
⊢ ( ( 𝐺 ∈ TopGrp ∧ 𝑇 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑇 ∈ 𝐽 ) → 0 ∈ 𝑇 ) |
12 |
4
|
conncompclo |
⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝑇 ∈ ( 𝐽 ∩ ( Clsd ‘ 𝐽 ) ) ∧ 0 ∈ 𝑇 ) → 𝑆 ⊆ 𝑇 ) |
13 |
6 9 11 12
|
syl3anc |
⊢ ( ( 𝐺 ∈ TopGrp ∧ 𝑇 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑇 ∈ 𝐽 ) → 𝑆 ⊆ 𝑇 ) |