Description: A topological group is a group. (Contributed by FL, 18-Apr-2010) (Revised by Mario Carneiro, 13-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | tgpgrp | ⊢ ( 𝐺 ∈ TopGrp → 𝐺 ∈ Grp ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid | ⊢ ( TopOpen ‘ 𝐺 ) = ( TopOpen ‘ 𝐺 ) | |
| 2 | eqid | ⊢ ( invg ‘ 𝐺 ) = ( invg ‘ 𝐺 ) | |
| 3 | 1 2 | istgp | ⊢ ( 𝐺 ∈ TopGrp ↔ ( 𝐺 ∈ Grp ∧ 𝐺 ∈ TopMnd ∧ ( invg ‘ 𝐺 ) ∈ ( ( TopOpen ‘ 𝐺 ) Cn ( TopOpen ‘ 𝐺 ) ) ) ) |
| 4 | 3 | simp1bi | ⊢ ( 𝐺 ∈ TopGrp → 𝐺 ∈ Grp ) |