Metamath Proof Explorer


Theorem tgpgrp

Description: A topological group is a group. (Contributed by FL, 18-Apr-2010) (Revised by Mario Carneiro, 13-Aug-2015)

Ref Expression
Assertion tgpgrp ( 𝐺 ∈ TopGrp → 𝐺 ∈ Grp )

Proof

Step Hyp Ref Expression
1 eqid ( TopOpen ‘ 𝐺 ) = ( TopOpen ‘ 𝐺 )
2 eqid ( invg𝐺 ) = ( invg𝐺 )
3 1 2 istgp ( 𝐺 ∈ TopGrp ↔ ( 𝐺 ∈ Grp ∧ 𝐺 ∈ TopMnd ∧ ( invg𝐺 ) ∈ ( ( TopOpen ‘ 𝐺 ) Cn ( TopOpen ‘ 𝐺 ) ) ) )
4 3 simp1bi ( 𝐺 ∈ TopGrp → 𝐺 ∈ Grp )