Step |
Hyp |
Ref |
Expression |
1 |
|
tgphaus.1 |
⊢ 0 = ( 0g ‘ 𝐺 ) |
2 |
|
tgphaus.j |
⊢ 𝐽 = ( TopOpen ‘ 𝐺 ) |
3 |
|
tgpgrp |
⊢ ( 𝐺 ∈ TopGrp → 𝐺 ∈ Grp ) |
4 |
|
eqid |
⊢ ( Base ‘ 𝐺 ) = ( Base ‘ 𝐺 ) |
5 |
4 1
|
grpidcl |
⊢ ( 𝐺 ∈ Grp → 0 ∈ ( Base ‘ 𝐺 ) ) |
6 |
3 5
|
syl |
⊢ ( 𝐺 ∈ TopGrp → 0 ∈ ( Base ‘ 𝐺 ) ) |
7 |
2 4
|
tgptopon |
⊢ ( 𝐺 ∈ TopGrp → 𝐽 ∈ ( TopOn ‘ ( Base ‘ 𝐺 ) ) ) |
8 |
|
toponuni |
⊢ ( 𝐽 ∈ ( TopOn ‘ ( Base ‘ 𝐺 ) ) → ( Base ‘ 𝐺 ) = ∪ 𝐽 ) |
9 |
7 8
|
syl |
⊢ ( 𝐺 ∈ TopGrp → ( Base ‘ 𝐺 ) = ∪ 𝐽 ) |
10 |
6 9
|
eleqtrd |
⊢ ( 𝐺 ∈ TopGrp → 0 ∈ ∪ 𝐽 ) |
11 |
|
eqid |
⊢ ∪ 𝐽 = ∪ 𝐽 |
12 |
11
|
sncld |
⊢ ( ( 𝐽 ∈ Haus ∧ 0 ∈ ∪ 𝐽 ) → { 0 } ∈ ( Clsd ‘ 𝐽 ) ) |
13 |
12
|
expcom |
⊢ ( 0 ∈ ∪ 𝐽 → ( 𝐽 ∈ Haus → { 0 } ∈ ( Clsd ‘ 𝐽 ) ) ) |
14 |
10 13
|
syl |
⊢ ( 𝐺 ∈ TopGrp → ( 𝐽 ∈ Haus → { 0 } ∈ ( Clsd ‘ 𝐽 ) ) ) |
15 |
|
eqid |
⊢ ( -g ‘ 𝐺 ) = ( -g ‘ 𝐺 ) |
16 |
2 15
|
tgpsubcn |
⊢ ( 𝐺 ∈ TopGrp → ( -g ‘ 𝐺 ) ∈ ( ( 𝐽 ×t 𝐽 ) Cn 𝐽 ) ) |
17 |
|
cnclima |
⊢ ( ( ( -g ‘ 𝐺 ) ∈ ( ( 𝐽 ×t 𝐽 ) Cn 𝐽 ) ∧ { 0 } ∈ ( Clsd ‘ 𝐽 ) ) → ( ◡ ( -g ‘ 𝐺 ) “ { 0 } ) ∈ ( Clsd ‘ ( 𝐽 ×t 𝐽 ) ) ) |
18 |
17
|
ex |
⊢ ( ( -g ‘ 𝐺 ) ∈ ( ( 𝐽 ×t 𝐽 ) Cn 𝐽 ) → ( { 0 } ∈ ( Clsd ‘ 𝐽 ) → ( ◡ ( -g ‘ 𝐺 ) “ { 0 } ) ∈ ( Clsd ‘ ( 𝐽 ×t 𝐽 ) ) ) ) |
19 |
16 18
|
syl |
⊢ ( 𝐺 ∈ TopGrp → ( { 0 } ∈ ( Clsd ‘ 𝐽 ) → ( ◡ ( -g ‘ 𝐺 ) “ { 0 } ) ∈ ( Clsd ‘ ( 𝐽 ×t 𝐽 ) ) ) ) |
20 |
|
cnvimass |
⊢ ( ◡ ( -g ‘ 𝐺 ) “ { 0 } ) ⊆ dom ( -g ‘ 𝐺 ) |
21 |
4 15
|
grpsubf |
⊢ ( 𝐺 ∈ Grp → ( -g ‘ 𝐺 ) : ( ( Base ‘ 𝐺 ) × ( Base ‘ 𝐺 ) ) ⟶ ( Base ‘ 𝐺 ) ) |
22 |
3 21
|
syl |
⊢ ( 𝐺 ∈ TopGrp → ( -g ‘ 𝐺 ) : ( ( Base ‘ 𝐺 ) × ( Base ‘ 𝐺 ) ) ⟶ ( Base ‘ 𝐺 ) ) |
23 |
20 22
|
fssdm |
⊢ ( 𝐺 ∈ TopGrp → ( ◡ ( -g ‘ 𝐺 ) “ { 0 } ) ⊆ ( ( Base ‘ 𝐺 ) × ( Base ‘ 𝐺 ) ) ) |
24 |
|
relxp |
⊢ Rel ( ( Base ‘ 𝐺 ) × ( Base ‘ 𝐺 ) ) |
25 |
|
relss |
⊢ ( ( ◡ ( -g ‘ 𝐺 ) “ { 0 } ) ⊆ ( ( Base ‘ 𝐺 ) × ( Base ‘ 𝐺 ) ) → ( Rel ( ( Base ‘ 𝐺 ) × ( Base ‘ 𝐺 ) ) → Rel ( ◡ ( -g ‘ 𝐺 ) “ { 0 } ) ) ) |
26 |
23 24 25
|
mpisyl |
⊢ ( 𝐺 ∈ TopGrp → Rel ( ◡ ( -g ‘ 𝐺 ) “ { 0 } ) ) |
27 |
|
dfrel4v |
⊢ ( Rel ( ◡ ( -g ‘ 𝐺 ) “ { 0 } ) ↔ ( ◡ ( -g ‘ 𝐺 ) “ { 0 } ) = { 〈 𝑥 , 𝑦 〉 ∣ 𝑥 ( ◡ ( -g ‘ 𝐺 ) “ { 0 } ) 𝑦 } ) |
28 |
26 27
|
sylib |
⊢ ( 𝐺 ∈ TopGrp → ( ◡ ( -g ‘ 𝐺 ) “ { 0 } ) = { 〈 𝑥 , 𝑦 〉 ∣ 𝑥 ( ◡ ( -g ‘ 𝐺 ) “ { 0 } ) 𝑦 } ) |
29 |
22
|
ffnd |
⊢ ( 𝐺 ∈ TopGrp → ( -g ‘ 𝐺 ) Fn ( ( Base ‘ 𝐺 ) × ( Base ‘ 𝐺 ) ) ) |
30 |
|
elpreima |
⊢ ( ( -g ‘ 𝐺 ) Fn ( ( Base ‘ 𝐺 ) × ( Base ‘ 𝐺 ) ) → ( 〈 𝑥 , 𝑦 〉 ∈ ( ◡ ( -g ‘ 𝐺 ) “ { 0 } ) ↔ ( 〈 𝑥 , 𝑦 〉 ∈ ( ( Base ‘ 𝐺 ) × ( Base ‘ 𝐺 ) ) ∧ ( ( -g ‘ 𝐺 ) ‘ 〈 𝑥 , 𝑦 〉 ) ∈ { 0 } ) ) ) |
31 |
29 30
|
syl |
⊢ ( 𝐺 ∈ TopGrp → ( 〈 𝑥 , 𝑦 〉 ∈ ( ◡ ( -g ‘ 𝐺 ) “ { 0 } ) ↔ ( 〈 𝑥 , 𝑦 〉 ∈ ( ( Base ‘ 𝐺 ) × ( Base ‘ 𝐺 ) ) ∧ ( ( -g ‘ 𝐺 ) ‘ 〈 𝑥 , 𝑦 〉 ) ∈ { 0 } ) ) ) |
32 |
|
opelxp |
⊢ ( 〈 𝑥 , 𝑦 〉 ∈ ( ( Base ‘ 𝐺 ) × ( Base ‘ 𝐺 ) ) ↔ ( 𝑥 ∈ ( Base ‘ 𝐺 ) ∧ 𝑦 ∈ ( Base ‘ 𝐺 ) ) ) |
33 |
32
|
anbi1i |
⊢ ( ( 〈 𝑥 , 𝑦 〉 ∈ ( ( Base ‘ 𝐺 ) × ( Base ‘ 𝐺 ) ) ∧ ( ( -g ‘ 𝐺 ) ‘ 〈 𝑥 , 𝑦 〉 ) ∈ { 0 } ) ↔ ( ( 𝑥 ∈ ( Base ‘ 𝐺 ) ∧ 𝑦 ∈ ( Base ‘ 𝐺 ) ) ∧ ( ( -g ‘ 𝐺 ) ‘ 〈 𝑥 , 𝑦 〉 ) ∈ { 0 } ) ) |
34 |
4 1 15
|
grpsubeq0 |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝑥 ∈ ( Base ‘ 𝐺 ) ∧ 𝑦 ∈ ( Base ‘ 𝐺 ) ) → ( ( 𝑥 ( -g ‘ 𝐺 ) 𝑦 ) = 0 ↔ 𝑥 = 𝑦 ) ) |
35 |
34
|
3expb |
⊢ ( ( 𝐺 ∈ Grp ∧ ( 𝑥 ∈ ( Base ‘ 𝐺 ) ∧ 𝑦 ∈ ( Base ‘ 𝐺 ) ) ) → ( ( 𝑥 ( -g ‘ 𝐺 ) 𝑦 ) = 0 ↔ 𝑥 = 𝑦 ) ) |
36 |
3 35
|
sylan |
⊢ ( ( 𝐺 ∈ TopGrp ∧ ( 𝑥 ∈ ( Base ‘ 𝐺 ) ∧ 𝑦 ∈ ( Base ‘ 𝐺 ) ) ) → ( ( 𝑥 ( -g ‘ 𝐺 ) 𝑦 ) = 0 ↔ 𝑥 = 𝑦 ) ) |
37 |
|
df-ov |
⊢ ( 𝑥 ( -g ‘ 𝐺 ) 𝑦 ) = ( ( -g ‘ 𝐺 ) ‘ 〈 𝑥 , 𝑦 〉 ) |
38 |
37
|
eleq1i |
⊢ ( ( 𝑥 ( -g ‘ 𝐺 ) 𝑦 ) ∈ { 0 } ↔ ( ( -g ‘ 𝐺 ) ‘ 〈 𝑥 , 𝑦 〉 ) ∈ { 0 } ) |
39 |
|
ovex |
⊢ ( 𝑥 ( -g ‘ 𝐺 ) 𝑦 ) ∈ V |
40 |
39
|
elsn |
⊢ ( ( 𝑥 ( -g ‘ 𝐺 ) 𝑦 ) ∈ { 0 } ↔ ( 𝑥 ( -g ‘ 𝐺 ) 𝑦 ) = 0 ) |
41 |
38 40
|
bitr3i |
⊢ ( ( ( -g ‘ 𝐺 ) ‘ 〈 𝑥 , 𝑦 〉 ) ∈ { 0 } ↔ ( 𝑥 ( -g ‘ 𝐺 ) 𝑦 ) = 0 ) |
42 |
|
equcom |
⊢ ( 𝑦 = 𝑥 ↔ 𝑥 = 𝑦 ) |
43 |
36 41 42
|
3bitr4g |
⊢ ( ( 𝐺 ∈ TopGrp ∧ ( 𝑥 ∈ ( Base ‘ 𝐺 ) ∧ 𝑦 ∈ ( Base ‘ 𝐺 ) ) ) → ( ( ( -g ‘ 𝐺 ) ‘ 〈 𝑥 , 𝑦 〉 ) ∈ { 0 } ↔ 𝑦 = 𝑥 ) ) |
44 |
43
|
pm5.32da |
⊢ ( 𝐺 ∈ TopGrp → ( ( ( 𝑥 ∈ ( Base ‘ 𝐺 ) ∧ 𝑦 ∈ ( Base ‘ 𝐺 ) ) ∧ ( ( -g ‘ 𝐺 ) ‘ 〈 𝑥 , 𝑦 〉 ) ∈ { 0 } ) ↔ ( ( 𝑥 ∈ ( Base ‘ 𝐺 ) ∧ 𝑦 ∈ ( Base ‘ 𝐺 ) ) ∧ 𝑦 = 𝑥 ) ) ) |
45 |
33 44
|
syl5bb |
⊢ ( 𝐺 ∈ TopGrp → ( ( 〈 𝑥 , 𝑦 〉 ∈ ( ( Base ‘ 𝐺 ) × ( Base ‘ 𝐺 ) ) ∧ ( ( -g ‘ 𝐺 ) ‘ 〈 𝑥 , 𝑦 〉 ) ∈ { 0 } ) ↔ ( ( 𝑥 ∈ ( Base ‘ 𝐺 ) ∧ 𝑦 ∈ ( Base ‘ 𝐺 ) ) ∧ 𝑦 = 𝑥 ) ) ) |
46 |
31 45
|
bitrd |
⊢ ( 𝐺 ∈ TopGrp → ( 〈 𝑥 , 𝑦 〉 ∈ ( ◡ ( -g ‘ 𝐺 ) “ { 0 } ) ↔ ( ( 𝑥 ∈ ( Base ‘ 𝐺 ) ∧ 𝑦 ∈ ( Base ‘ 𝐺 ) ) ∧ 𝑦 = 𝑥 ) ) ) |
47 |
|
df-br |
⊢ ( 𝑥 ( ◡ ( -g ‘ 𝐺 ) “ { 0 } ) 𝑦 ↔ 〈 𝑥 , 𝑦 〉 ∈ ( ◡ ( -g ‘ 𝐺 ) “ { 0 } ) ) |
48 |
|
eleq1w |
⊢ ( 𝑦 = 𝑥 → ( 𝑦 ∈ ( Base ‘ 𝐺 ) ↔ 𝑥 ∈ ( Base ‘ 𝐺 ) ) ) |
49 |
48
|
biimparc |
⊢ ( ( 𝑥 ∈ ( Base ‘ 𝐺 ) ∧ 𝑦 = 𝑥 ) → 𝑦 ∈ ( Base ‘ 𝐺 ) ) |
50 |
49
|
pm4.71i |
⊢ ( ( 𝑥 ∈ ( Base ‘ 𝐺 ) ∧ 𝑦 = 𝑥 ) ↔ ( ( 𝑥 ∈ ( Base ‘ 𝐺 ) ∧ 𝑦 = 𝑥 ) ∧ 𝑦 ∈ ( Base ‘ 𝐺 ) ) ) |
51 |
|
an32 |
⊢ ( ( ( 𝑥 ∈ ( Base ‘ 𝐺 ) ∧ 𝑦 ∈ ( Base ‘ 𝐺 ) ) ∧ 𝑦 = 𝑥 ) ↔ ( ( 𝑥 ∈ ( Base ‘ 𝐺 ) ∧ 𝑦 = 𝑥 ) ∧ 𝑦 ∈ ( Base ‘ 𝐺 ) ) ) |
52 |
50 51
|
bitr4i |
⊢ ( ( 𝑥 ∈ ( Base ‘ 𝐺 ) ∧ 𝑦 = 𝑥 ) ↔ ( ( 𝑥 ∈ ( Base ‘ 𝐺 ) ∧ 𝑦 ∈ ( Base ‘ 𝐺 ) ) ∧ 𝑦 = 𝑥 ) ) |
53 |
46 47 52
|
3bitr4g |
⊢ ( 𝐺 ∈ TopGrp → ( 𝑥 ( ◡ ( -g ‘ 𝐺 ) “ { 0 } ) 𝑦 ↔ ( 𝑥 ∈ ( Base ‘ 𝐺 ) ∧ 𝑦 = 𝑥 ) ) ) |
54 |
53
|
opabbidv |
⊢ ( 𝐺 ∈ TopGrp → { 〈 𝑥 , 𝑦 〉 ∣ 𝑥 ( ◡ ( -g ‘ 𝐺 ) “ { 0 } ) 𝑦 } = { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ ( Base ‘ 𝐺 ) ∧ 𝑦 = 𝑥 ) } ) |
55 |
|
opabresid |
⊢ ( I ↾ ( Base ‘ 𝐺 ) ) = { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ ( Base ‘ 𝐺 ) ∧ 𝑦 = 𝑥 ) } |
56 |
54 55
|
eqtr4di |
⊢ ( 𝐺 ∈ TopGrp → { 〈 𝑥 , 𝑦 〉 ∣ 𝑥 ( ◡ ( -g ‘ 𝐺 ) “ { 0 } ) 𝑦 } = ( I ↾ ( Base ‘ 𝐺 ) ) ) |
57 |
9
|
reseq2d |
⊢ ( 𝐺 ∈ TopGrp → ( I ↾ ( Base ‘ 𝐺 ) ) = ( I ↾ ∪ 𝐽 ) ) |
58 |
28 56 57
|
3eqtrd |
⊢ ( 𝐺 ∈ TopGrp → ( ◡ ( -g ‘ 𝐺 ) “ { 0 } ) = ( I ↾ ∪ 𝐽 ) ) |
59 |
58
|
eleq1d |
⊢ ( 𝐺 ∈ TopGrp → ( ( ◡ ( -g ‘ 𝐺 ) “ { 0 } ) ∈ ( Clsd ‘ ( 𝐽 ×t 𝐽 ) ) ↔ ( I ↾ ∪ 𝐽 ) ∈ ( Clsd ‘ ( 𝐽 ×t 𝐽 ) ) ) ) |
60 |
19 59
|
sylibd |
⊢ ( 𝐺 ∈ TopGrp → ( { 0 } ∈ ( Clsd ‘ 𝐽 ) → ( I ↾ ∪ 𝐽 ) ∈ ( Clsd ‘ ( 𝐽 ×t 𝐽 ) ) ) ) |
61 |
|
topontop |
⊢ ( 𝐽 ∈ ( TopOn ‘ ( Base ‘ 𝐺 ) ) → 𝐽 ∈ Top ) |
62 |
7 61
|
syl |
⊢ ( 𝐺 ∈ TopGrp → 𝐽 ∈ Top ) |
63 |
11
|
hausdiag |
⊢ ( 𝐽 ∈ Haus ↔ ( 𝐽 ∈ Top ∧ ( I ↾ ∪ 𝐽 ) ∈ ( Clsd ‘ ( 𝐽 ×t 𝐽 ) ) ) ) |
64 |
63
|
baib |
⊢ ( 𝐽 ∈ Top → ( 𝐽 ∈ Haus ↔ ( I ↾ ∪ 𝐽 ) ∈ ( Clsd ‘ ( 𝐽 ×t 𝐽 ) ) ) ) |
65 |
62 64
|
syl |
⊢ ( 𝐺 ∈ TopGrp → ( 𝐽 ∈ Haus ↔ ( I ↾ ∪ 𝐽 ) ∈ ( Clsd ‘ ( 𝐽 ×t 𝐽 ) ) ) ) |
66 |
60 65
|
sylibrd |
⊢ ( 𝐺 ∈ TopGrp → ( { 0 } ∈ ( Clsd ‘ 𝐽 ) → 𝐽 ∈ Haus ) ) |
67 |
14 66
|
impbid |
⊢ ( 𝐺 ∈ TopGrp → ( 𝐽 ∈ Haus ↔ { 0 } ∈ ( Clsd ‘ 𝐽 ) ) ) |