Metamath Proof Explorer
Description: In a topological group, the inverse function is continuous.
(Contributed by FL, 21-Jun-2010) (Revised by FL, 27-Jun-2014)
|
|
Ref |
Expression |
|
Hypotheses |
tgpcn.j |
⊢ 𝐽 = ( TopOpen ‘ 𝐺 ) |
|
|
tgpinv.5 |
⊢ 𝐼 = ( invg ‘ 𝐺 ) |
|
Assertion |
tgpinv |
⊢ ( 𝐺 ∈ TopGrp → 𝐼 ∈ ( 𝐽 Cn 𝐽 ) ) |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
tgpcn.j |
⊢ 𝐽 = ( TopOpen ‘ 𝐺 ) |
2 |
|
tgpinv.5 |
⊢ 𝐼 = ( invg ‘ 𝐺 ) |
3 |
1 2
|
istgp |
⊢ ( 𝐺 ∈ TopGrp ↔ ( 𝐺 ∈ Grp ∧ 𝐺 ∈ TopMnd ∧ 𝐼 ∈ ( 𝐽 Cn 𝐽 ) ) ) |
4 |
3
|
simp3bi |
⊢ ( 𝐺 ∈ TopGrp → 𝐼 ∈ ( 𝐽 Cn 𝐽 ) ) |