| Step | Hyp | Ref | Expression | 
						
							| 1 |  | tgpmulg.j | ⊢ 𝐽  =  ( TopOpen ‘ 𝐺 ) | 
						
							| 2 |  | tgpmulg.t | ⊢  ·   =  ( .g ‘ 𝐺 ) | 
						
							| 3 |  | zex | ⊢ ℤ  ∈  V | 
						
							| 4 | 3 | a1i | ⊢ ( 𝐺  ∈  TopGrp  →  ℤ  ∈  V ) | 
						
							| 5 |  | eqid | ⊢ ( Base ‘ 𝐺 )  =  ( Base ‘ 𝐺 ) | 
						
							| 6 | 1 5 | tgptopon | ⊢ ( 𝐺  ∈  TopGrp  →  𝐽  ∈  ( TopOn ‘ ( Base ‘ 𝐺 ) ) ) | 
						
							| 7 |  | topontop | ⊢ ( 𝐽  ∈  ( TopOn ‘ ( Base ‘ 𝐺 ) )  →  𝐽  ∈  Top ) | 
						
							| 8 | 6 7 | syl | ⊢ ( 𝐺  ∈  TopGrp  →  𝐽  ∈  Top ) | 
						
							| 9 | 5 2 | mulgfn | ⊢  ·   Fn  ( ℤ  ×  ( Base ‘ 𝐺 ) ) | 
						
							| 10 | 9 | a1i | ⊢ ( 𝐺  ∈  TopGrp  →   ·   Fn  ( ℤ  ×  ( Base ‘ 𝐺 ) ) ) | 
						
							| 11 | 1 2 5 | tgpmulg | ⊢ ( ( 𝐺  ∈  TopGrp  ∧  𝑛  ∈  ℤ )  →  ( 𝑥  ∈  ( Base ‘ 𝐺 )  ↦  ( 𝑛  ·  𝑥 ) )  ∈  ( 𝐽  Cn  𝐽 ) ) | 
						
							| 12 | 4 6 8 10 11 | txdis1cn | ⊢ ( 𝐺  ∈  TopGrp  →   ·   ∈  ( ( 𝒫  ℤ  ×t  𝐽 )  Cn  𝐽 ) ) |