Metamath Proof Explorer
		
		
		
		Description:  The topology of a topological group.  (Contributed by Mario Carneiro, 27-Jun-2014)  (Revised by Mario Carneiro, 13-Aug-2015)
		
			
				
					|  |  | Ref | Expression | 
					
						|  | Hypotheses | tgpcn.j | ⊢ 𝐽  =  ( TopOpen ‘ 𝐺 ) | 
					
						|  |  | tgptopon.x | ⊢ 𝑋  =  ( Base ‘ 𝐺 ) | 
				
					|  | Assertion | tgptopon | ⊢  ( 𝐺  ∈  TopGrp  →  𝐽  ∈  ( TopOn ‘ 𝑋 ) ) | 
			
		
		
			
				Proof
				
					
						| Step | Hyp | Ref | Expression | 
						
							| 1 |  | tgpcn.j | ⊢ 𝐽  =  ( TopOpen ‘ 𝐺 ) | 
						
							| 2 |  | tgptopon.x | ⊢ 𝑋  =  ( Base ‘ 𝐺 ) | 
						
							| 3 |  | tgptps | ⊢ ( 𝐺  ∈  TopGrp  →  𝐺  ∈  TopSp ) | 
						
							| 4 | 2 1 | istps | ⊢ ( 𝐺  ∈  TopSp  ↔  𝐽  ∈  ( TopOn ‘ 𝑋 ) ) | 
						
							| 5 | 3 4 | sylib | ⊢ ( 𝐺  ∈  TopGrp  →  𝐽  ∈  ( TopOn ‘ 𝑋 ) ) |