Metamath Proof Explorer


Theorem tgptps

Description: A topological group is a topological space. (Contributed by FL, 21-Jun-2010) (Revised by Mario Carneiro, 13-Aug-2015)

Ref Expression
Assertion tgptps ( 𝐺 ∈ TopGrp → 𝐺 ∈ TopSp )

Proof

Step Hyp Ref Expression
1 tgptmd ( 𝐺 ∈ TopGrp → 𝐺 ∈ TopMnd )
2 tmdtps ( 𝐺 ∈ TopMnd → 𝐺 ∈ TopSp )
3 1 2 syl ( 𝐺 ∈ TopGrp → 𝐺 ∈ TopSp )