Step |
Hyp |
Ref |
Expression |
1 |
|
tgptsmscls.b |
⊢ 𝐵 = ( Base ‘ 𝐺 ) |
2 |
|
tgptsmscls.j |
⊢ 𝐽 = ( TopOpen ‘ 𝐺 ) |
3 |
|
tgptsmscls.1 |
⊢ ( 𝜑 → 𝐺 ∈ CMnd ) |
4 |
|
tgptsmscls.2 |
⊢ ( 𝜑 → 𝐺 ∈ TopGrp ) |
5 |
|
tgptsmscls.a |
⊢ ( 𝜑 → 𝐴 ∈ 𝑉 ) |
6 |
|
tgptsmscls.f |
⊢ ( 𝜑 → 𝐹 : 𝐴 ⟶ 𝐵 ) |
7 |
2 1
|
tgptopon |
⊢ ( 𝐺 ∈ TopGrp → 𝐽 ∈ ( TopOn ‘ 𝐵 ) ) |
8 |
4 7
|
syl |
⊢ ( 𝜑 → 𝐽 ∈ ( TopOn ‘ 𝐵 ) ) |
9 |
|
topontop |
⊢ ( 𝐽 ∈ ( TopOn ‘ 𝐵 ) → 𝐽 ∈ Top ) |
10 |
8 9
|
syl |
⊢ ( 𝜑 → 𝐽 ∈ Top ) |
11 |
|
0cld |
⊢ ( 𝐽 ∈ Top → ∅ ∈ ( Clsd ‘ 𝐽 ) ) |
12 |
10 11
|
syl |
⊢ ( 𝜑 → ∅ ∈ ( Clsd ‘ 𝐽 ) ) |
13 |
|
eleq1 |
⊢ ( ( 𝐺 tsums 𝐹 ) = ∅ → ( ( 𝐺 tsums 𝐹 ) ∈ ( Clsd ‘ 𝐽 ) ↔ ∅ ∈ ( Clsd ‘ 𝐽 ) ) ) |
14 |
12 13
|
syl5ibrcom |
⊢ ( 𝜑 → ( ( 𝐺 tsums 𝐹 ) = ∅ → ( 𝐺 tsums 𝐹 ) ∈ ( Clsd ‘ 𝐽 ) ) ) |
15 |
|
n0 |
⊢ ( ( 𝐺 tsums 𝐹 ) ≠ ∅ ↔ ∃ 𝑥 𝑥 ∈ ( 𝐺 tsums 𝐹 ) ) |
16 |
3
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐺 tsums 𝐹 ) ) → 𝐺 ∈ CMnd ) |
17 |
4
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐺 tsums 𝐹 ) ) → 𝐺 ∈ TopGrp ) |
18 |
5
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐺 tsums 𝐹 ) ) → 𝐴 ∈ 𝑉 ) |
19 |
6
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐺 tsums 𝐹 ) ) → 𝐹 : 𝐴 ⟶ 𝐵 ) |
20 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐺 tsums 𝐹 ) ) → 𝑥 ∈ ( 𝐺 tsums 𝐹 ) ) |
21 |
1 2 16 17 18 19 20
|
tgptsmscls |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐺 tsums 𝐹 ) ) → ( 𝐺 tsums 𝐹 ) = ( ( cls ‘ 𝐽 ) ‘ { 𝑥 } ) ) |
22 |
|
tgptps |
⊢ ( 𝐺 ∈ TopGrp → 𝐺 ∈ TopSp ) |
23 |
4 22
|
syl |
⊢ ( 𝜑 → 𝐺 ∈ TopSp ) |
24 |
1 3 23 5 6
|
tsmscl |
⊢ ( 𝜑 → ( 𝐺 tsums 𝐹 ) ⊆ 𝐵 ) |
25 |
|
toponuni |
⊢ ( 𝐽 ∈ ( TopOn ‘ 𝐵 ) → 𝐵 = ∪ 𝐽 ) |
26 |
8 25
|
syl |
⊢ ( 𝜑 → 𝐵 = ∪ 𝐽 ) |
27 |
24 26
|
sseqtrd |
⊢ ( 𝜑 → ( 𝐺 tsums 𝐹 ) ⊆ ∪ 𝐽 ) |
28 |
27
|
sselda |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐺 tsums 𝐹 ) ) → 𝑥 ∈ ∪ 𝐽 ) |
29 |
28
|
snssd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐺 tsums 𝐹 ) ) → { 𝑥 } ⊆ ∪ 𝐽 ) |
30 |
|
eqid |
⊢ ∪ 𝐽 = ∪ 𝐽 |
31 |
30
|
clscld |
⊢ ( ( 𝐽 ∈ Top ∧ { 𝑥 } ⊆ ∪ 𝐽 ) → ( ( cls ‘ 𝐽 ) ‘ { 𝑥 } ) ∈ ( Clsd ‘ 𝐽 ) ) |
32 |
10 29 31
|
syl2an2r |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐺 tsums 𝐹 ) ) → ( ( cls ‘ 𝐽 ) ‘ { 𝑥 } ) ∈ ( Clsd ‘ 𝐽 ) ) |
33 |
21 32
|
eqeltrd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐺 tsums 𝐹 ) ) → ( 𝐺 tsums 𝐹 ) ∈ ( Clsd ‘ 𝐽 ) ) |
34 |
33
|
ex |
⊢ ( 𝜑 → ( 𝑥 ∈ ( 𝐺 tsums 𝐹 ) → ( 𝐺 tsums 𝐹 ) ∈ ( Clsd ‘ 𝐽 ) ) ) |
35 |
34
|
exlimdv |
⊢ ( 𝜑 → ( ∃ 𝑥 𝑥 ∈ ( 𝐺 tsums 𝐹 ) → ( 𝐺 tsums 𝐹 ) ∈ ( Clsd ‘ 𝐽 ) ) ) |
36 |
15 35
|
syl5bi |
⊢ ( 𝜑 → ( ( 𝐺 tsums 𝐹 ) ≠ ∅ → ( 𝐺 tsums 𝐹 ) ∈ ( Clsd ‘ 𝐽 ) ) ) |
37 |
14 36
|
pm2.61dne |
⊢ ( 𝜑 → ( 𝐺 tsums 𝐹 ) ∈ ( Clsd ‘ 𝐽 ) ) |