Metamath Proof Explorer


Theorem tgptsmscls

Description: A sum in a topological group is uniquely determined up to a coset of cls ( { 0 } ) , which is a normal subgroup by clsnsg , 0nsg . (Contributed by Mario Carneiro, 22-Sep-2015) (Proof shortened by AV, 24-Jul-2019)

Ref Expression
Hypotheses tgptsmscls.b 𝐵 = ( Base ‘ 𝐺 )
tgptsmscls.j 𝐽 = ( TopOpen ‘ 𝐺 )
tgptsmscls.1 ( 𝜑𝐺 ∈ CMnd )
tgptsmscls.2 ( 𝜑𝐺 ∈ TopGrp )
tgptsmscls.a ( 𝜑𝐴𝑉 )
tgptsmscls.f ( 𝜑𝐹 : 𝐴𝐵 )
tgptsmscls.x ( 𝜑𝑋 ∈ ( 𝐺 tsums 𝐹 ) )
Assertion tgptsmscls ( 𝜑 → ( 𝐺 tsums 𝐹 ) = ( ( cls ‘ 𝐽 ) ‘ { 𝑋 } ) )

Proof

Step Hyp Ref Expression
1 tgptsmscls.b 𝐵 = ( Base ‘ 𝐺 )
2 tgptsmscls.j 𝐽 = ( TopOpen ‘ 𝐺 )
3 tgptsmscls.1 ( 𝜑𝐺 ∈ CMnd )
4 tgptsmscls.2 ( 𝜑𝐺 ∈ TopGrp )
5 tgptsmscls.a ( 𝜑𝐴𝑉 )
6 tgptsmscls.f ( 𝜑𝐹 : 𝐴𝐵 )
7 tgptsmscls.x ( 𝜑𝑋 ∈ ( 𝐺 tsums 𝐹 ) )
8 4 adantr ( ( 𝜑𝑥 ∈ ( 𝐺 tsums 𝐹 ) ) → 𝐺 ∈ TopGrp )
9 tgpgrp ( 𝐺 ∈ TopGrp → 𝐺 ∈ Grp )
10 8 9 syl ( ( 𝜑𝑥 ∈ ( 𝐺 tsums 𝐹 ) ) → 𝐺 ∈ Grp )
11 eqid ( 0g𝐺 ) = ( 0g𝐺 )
12 11 0subg ( 𝐺 ∈ Grp → { ( 0g𝐺 ) } ∈ ( SubGrp ‘ 𝐺 ) )
13 10 12 syl ( ( 𝜑𝑥 ∈ ( 𝐺 tsums 𝐹 ) ) → { ( 0g𝐺 ) } ∈ ( SubGrp ‘ 𝐺 ) )
14 2 clssubg ( ( 𝐺 ∈ TopGrp ∧ { ( 0g𝐺 ) } ∈ ( SubGrp ‘ 𝐺 ) ) → ( ( cls ‘ 𝐽 ) ‘ { ( 0g𝐺 ) } ) ∈ ( SubGrp ‘ 𝐺 ) )
15 8 13 14 syl2anc ( ( 𝜑𝑥 ∈ ( 𝐺 tsums 𝐹 ) ) → ( ( cls ‘ 𝐽 ) ‘ { ( 0g𝐺 ) } ) ∈ ( SubGrp ‘ 𝐺 ) )
16 eqid ( 𝐺 ~QG ( ( cls ‘ 𝐽 ) ‘ { ( 0g𝐺 ) } ) ) = ( 𝐺 ~QG ( ( cls ‘ 𝐽 ) ‘ { ( 0g𝐺 ) } ) )
17 1 16 eqger ( ( ( cls ‘ 𝐽 ) ‘ { ( 0g𝐺 ) } ) ∈ ( SubGrp ‘ 𝐺 ) → ( 𝐺 ~QG ( ( cls ‘ 𝐽 ) ‘ { ( 0g𝐺 ) } ) ) Er 𝐵 )
18 15 17 syl ( ( 𝜑𝑥 ∈ ( 𝐺 tsums 𝐹 ) ) → ( 𝐺 ~QG ( ( cls ‘ 𝐽 ) ‘ { ( 0g𝐺 ) } ) ) Er 𝐵 )
19 tgptps ( 𝐺 ∈ TopGrp → 𝐺 ∈ TopSp )
20 4 19 syl ( 𝜑𝐺 ∈ TopSp )
21 1 3 20 5 6 tsmscl ( 𝜑 → ( 𝐺 tsums 𝐹 ) ⊆ 𝐵 )
22 21 sselda ( ( 𝜑𝑥 ∈ ( 𝐺 tsums 𝐹 ) ) → 𝑥𝐵 )
23 21 7 sseldd ( 𝜑𝑋𝐵 )
24 23 adantr ( ( 𝜑𝑥 ∈ ( 𝐺 tsums 𝐹 ) ) → 𝑋𝐵 )
25 eqid ( -g𝐺 ) = ( -g𝐺 )
26 3 adantr ( ( 𝜑𝑥 ∈ ( 𝐺 tsums 𝐹 ) ) → 𝐺 ∈ CMnd )
27 5 adantr ( ( 𝜑𝑥 ∈ ( 𝐺 tsums 𝐹 ) ) → 𝐴𝑉 )
28 6 adantr ( ( 𝜑𝑥 ∈ ( 𝐺 tsums 𝐹 ) ) → 𝐹 : 𝐴𝐵 )
29 7 adantr ( ( 𝜑𝑥 ∈ ( 𝐺 tsums 𝐹 ) ) → 𝑋 ∈ ( 𝐺 tsums 𝐹 ) )
30 simpr ( ( 𝜑𝑥 ∈ ( 𝐺 tsums 𝐹 ) ) → 𝑥 ∈ ( 𝐺 tsums 𝐹 ) )
31 1 25 26 8 27 28 28 29 30 tsmssub ( ( 𝜑𝑥 ∈ ( 𝐺 tsums 𝐹 ) ) → ( 𝑋 ( -g𝐺 ) 𝑥 ) ∈ ( 𝐺 tsums ( 𝐹f ( -g𝐺 ) 𝐹 ) ) )
32 28 ffvelrnda ( ( ( 𝜑𝑥 ∈ ( 𝐺 tsums 𝐹 ) ) ∧ 𝑘𝐴 ) → ( 𝐹𝑘 ) ∈ 𝐵 )
33 28 feqmptd ( ( 𝜑𝑥 ∈ ( 𝐺 tsums 𝐹 ) ) → 𝐹 = ( 𝑘𝐴 ↦ ( 𝐹𝑘 ) ) )
34 27 32 32 33 33 offval2 ( ( 𝜑𝑥 ∈ ( 𝐺 tsums 𝐹 ) ) → ( 𝐹f ( -g𝐺 ) 𝐹 ) = ( 𝑘𝐴 ↦ ( ( 𝐹𝑘 ) ( -g𝐺 ) ( 𝐹𝑘 ) ) ) )
35 10 adantr ( ( ( 𝜑𝑥 ∈ ( 𝐺 tsums 𝐹 ) ) ∧ 𝑘𝐴 ) → 𝐺 ∈ Grp )
36 1 11 25 grpsubid ( ( 𝐺 ∈ Grp ∧ ( 𝐹𝑘 ) ∈ 𝐵 ) → ( ( 𝐹𝑘 ) ( -g𝐺 ) ( 𝐹𝑘 ) ) = ( 0g𝐺 ) )
37 35 32 36 syl2anc ( ( ( 𝜑𝑥 ∈ ( 𝐺 tsums 𝐹 ) ) ∧ 𝑘𝐴 ) → ( ( 𝐹𝑘 ) ( -g𝐺 ) ( 𝐹𝑘 ) ) = ( 0g𝐺 ) )
38 37 mpteq2dva ( ( 𝜑𝑥 ∈ ( 𝐺 tsums 𝐹 ) ) → ( 𝑘𝐴 ↦ ( ( 𝐹𝑘 ) ( -g𝐺 ) ( 𝐹𝑘 ) ) ) = ( 𝑘𝐴 ↦ ( 0g𝐺 ) ) )
39 34 38 eqtrd ( ( 𝜑𝑥 ∈ ( 𝐺 tsums 𝐹 ) ) → ( 𝐹f ( -g𝐺 ) 𝐹 ) = ( 𝑘𝐴 ↦ ( 0g𝐺 ) ) )
40 39 oveq2d ( ( 𝜑𝑥 ∈ ( 𝐺 tsums 𝐹 ) ) → ( 𝐺 tsums ( 𝐹f ( -g𝐺 ) 𝐹 ) ) = ( 𝐺 tsums ( 𝑘𝐴 ↦ ( 0g𝐺 ) ) ) )
41 8 19 syl ( ( 𝜑𝑥 ∈ ( 𝐺 tsums 𝐹 ) ) → 𝐺 ∈ TopSp )
42 1 11 grpidcl ( 𝐺 ∈ Grp → ( 0g𝐺 ) ∈ 𝐵 )
43 10 42 syl ( ( 𝜑𝑥 ∈ ( 𝐺 tsums 𝐹 ) ) → ( 0g𝐺 ) ∈ 𝐵 )
44 43 adantr ( ( ( 𝜑𝑥 ∈ ( 𝐺 tsums 𝐹 ) ) ∧ 𝑘𝐴 ) → ( 0g𝐺 ) ∈ 𝐵 )
45 44 fmpttd ( ( 𝜑𝑥 ∈ ( 𝐺 tsums 𝐹 ) ) → ( 𝑘𝐴 ↦ ( 0g𝐺 ) ) : 𝐴𝐵 )
46 fconstmpt ( 𝐴 × { ( 0g𝐺 ) } ) = ( 𝑘𝐴 ↦ ( 0g𝐺 ) )
47 fvexd ( 𝜑 → ( 0g𝐺 ) ∈ V )
48 5 47 fczfsuppd ( 𝜑 → ( 𝐴 × { ( 0g𝐺 ) } ) finSupp ( 0g𝐺 ) )
49 48 adantr ( ( 𝜑𝑥 ∈ ( 𝐺 tsums 𝐹 ) ) → ( 𝐴 × { ( 0g𝐺 ) } ) finSupp ( 0g𝐺 ) )
50 46 49 eqbrtrrid ( ( 𝜑𝑥 ∈ ( 𝐺 tsums 𝐹 ) ) → ( 𝑘𝐴 ↦ ( 0g𝐺 ) ) finSupp ( 0g𝐺 ) )
51 1 11 26 41 27 45 50 2 tsmsgsum ( ( 𝜑𝑥 ∈ ( 𝐺 tsums 𝐹 ) ) → ( 𝐺 tsums ( 𝑘𝐴 ↦ ( 0g𝐺 ) ) ) = ( ( cls ‘ 𝐽 ) ‘ { ( 𝐺 Σg ( 𝑘𝐴 ↦ ( 0g𝐺 ) ) ) } ) )
52 cmnmnd ( 𝐺 ∈ CMnd → 𝐺 ∈ Mnd )
53 26 52 syl ( ( 𝜑𝑥 ∈ ( 𝐺 tsums 𝐹 ) ) → 𝐺 ∈ Mnd )
54 11 gsumz ( ( 𝐺 ∈ Mnd ∧ 𝐴𝑉 ) → ( 𝐺 Σg ( 𝑘𝐴 ↦ ( 0g𝐺 ) ) ) = ( 0g𝐺 ) )
55 53 27 54 syl2anc ( ( 𝜑𝑥 ∈ ( 𝐺 tsums 𝐹 ) ) → ( 𝐺 Σg ( 𝑘𝐴 ↦ ( 0g𝐺 ) ) ) = ( 0g𝐺 ) )
56 55 sneqd ( ( 𝜑𝑥 ∈ ( 𝐺 tsums 𝐹 ) ) → { ( 𝐺 Σg ( 𝑘𝐴 ↦ ( 0g𝐺 ) ) ) } = { ( 0g𝐺 ) } )
57 56 fveq2d ( ( 𝜑𝑥 ∈ ( 𝐺 tsums 𝐹 ) ) → ( ( cls ‘ 𝐽 ) ‘ { ( 𝐺 Σg ( 𝑘𝐴 ↦ ( 0g𝐺 ) ) ) } ) = ( ( cls ‘ 𝐽 ) ‘ { ( 0g𝐺 ) } ) )
58 40 51 57 3eqtrd ( ( 𝜑𝑥 ∈ ( 𝐺 tsums 𝐹 ) ) → ( 𝐺 tsums ( 𝐹f ( -g𝐺 ) 𝐹 ) ) = ( ( cls ‘ 𝐽 ) ‘ { ( 0g𝐺 ) } ) )
59 31 58 eleqtrd ( ( 𝜑𝑥 ∈ ( 𝐺 tsums 𝐹 ) ) → ( 𝑋 ( -g𝐺 ) 𝑥 ) ∈ ( ( cls ‘ 𝐽 ) ‘ { ( 0g𝐺 ) } ) )
60 isabl ( 𝐺 ∈ Abel ↔ ( 𝐺 ∈ Grp ∧ 𝐺 ∈ CMnd ) )
61 10 26 60 sylanbrc ( ( 𝜑𝑥 ∈ ( 𝐺 tsums 𝐹 ) ) → 𝐺 ∈ Abel )
62 1 subgss ( ( ( cls ‘ 𝐽 ) ‘ { ( 0g𝐺 ) } ) ∈ ( SubGrp ‘ 𝐺 ) → ( ( cls ‘ 𝐽 ) ‘ { ( 0g𝐺 ) } ) ⊆ 𝐵 )
63 15 62 syl ( ( 𝜑𝑥 ∈ ( 𝐺 tsums 𝐹 ) ) → ( ( cls ‘ 𝐽 ) ‘ { ( 0g𝐺 ) } ) ⊆ 𝐵 )
64 1 25 16 eqgabl ( ( 𝐺 ∈ Abel ∧ ( ( cls ‘ 𝐽 ) ‘ { ( 0g𝐺 ) } ) ⊆ 𝐵 ) → ( 𝑥 ( 𝐺 ~QG ( ( cls ‘ 𝐽 ) ‘ { ( 0g𝐺 ) } ) ) 𝑋 ↔ ( 𝑥𝐵𝑋𝐵 ∧ ( 𝑋 ( -g𝐺 ) 𝑥 ) ∈ ( ( cls ‘ 𝐽 ) ‘ { ( 0g𝐺 ) } ) ) ) )
65 61 63 64 syl2anc ( ( 𝜑𝑥 ∈ ( 𝐺 tsums 𝐹 ) ) → ( 𝑥 ( 𝐺 ~QG ( ( cls ‘ 𝐽 ) ‘ { ( 0g𝐺 ) } ) ) 𝑋 ↔ ( 𝑥𝐵𝑋𝐵 ∧ ( 𝑋 ( -g𝐺 ) 𝑥 ) ∈ ( ( cls ‘ 𝐽 ) ‘ { ( 0g𝐺 ) } ) ) ) )
66 22 24 59 65 mpbir3and ( ( 𝜑𝑥 ∈ ( 𝐺 tsums 𝐹 ) ) → 𝑥 ( 𝐺 ~QG ( ( cls ‘ 𝐽 ) ‘ { ( 0g𝐺 ) } ) ) 𝑋 )
67 18 66 ersym ( ( 𝜑𝑥 ∈ ( 𝐺 tsums 𝐹 ) ) → 𝑋 ( 𝐺 ~QG ( ( cls ‘ 𝐽 ) ‘ { ( 0g𝐺 ) } ) ) 𝑥 )
68 16 releqg Rel ( 𝐺 ~QG ( ( cls ‘ 𝐽 ) ‘ { ( 0g𝐺 ) } ) )
69 relelec ( Rel ( 𝐺 ~QG ( ( cls ‘ 𝐽 ) ‘ { ( 0g𝐺 ) } ) ) → ( 𝑥 ∈ [ 𝑋 ] ( 𝐺 ~QG ( ( cls ‘ 𝐽 ) ‘ { ( 0g𝐺 ) } ) ) ↔ 𝑋 ( 𝐺 ~QG ( ( cls ‘ 𝐽 ) ‘ { ( 0g𝐺 ) } ) ) 𝑥 ) )
70 68 69 ax-mp ( 𝑥 ∈ [ 𝑋 ] ( 𝐺 ~QG ( ( cls ‘ 𝐽 ) ‘ { ( 0g𝐺 ) } ) ) ↔ 𝑋 ( 𝐺 ~QG ( ( cls ‘ 𝐽 ) ‘ { ( 0g𝐺 ) } ) ) 𝑥 )
71 67 70 sylibr ( ( 𝜑𝑥 ∈ ( 𝐺 tsums 𝐹 ) ) → 𝑥 ∈ [ 𝑋 ] ( 𝐺 ~QG ( ( cls ‘ 𝐽 ) ‘ { ( 0g𝐺 ) } ) ) )
72 eqid ( ( cls ‘ 𝐽 ) ‘ { ( 0g𝐺 ) } ) = ( ( cls ‘ 𝐽 ) ‘ { ( 0g𝐺 ) } )
73 1 2 11 16 72 snclseqg ( ( 𝐺 ∈ TopGrp ∧ 𝑋𝐵 ) → [ 𝑋 ] ( 𝐺 ~QG ( ( cls ‘ 𝐽 ) ‘ { ( 0g𝐺 ) } ) ) = ( ( cls ‘ 𝐽 ) ‘ { 𝑋 } ) )
74 8 24 73 syl2anc ( ( 𝜑𝑥 ∈ ( 𝐺 tsums 𝐹 ) ) → [ 𝑋 ] ( 𝐺 ~QG ( ( cls ‘ 𝐽 ) ‘ { ( 0g𝐺 ) } ) ) = ( ( cls ‘ 𝐽 ) ‘ { 𝑋 } ) )
75 71 74 eleqtrd ( ( 𝜑𝑥 ∈ ( 𝐺 tsums 𝐹 ) ) → 𝑥 ∈ ( ( cls ‘ 𝐽 ) ‘ { 𝑋 } ) )
76 75 ex ( 𝜑 → ( 𝑥 ∈ ( 𝐺 tsums 𝐹 ) → 𝑥 ∈ ( ( cls ‘ 𝐽 ) ‘ { 𝑋 } ) ) )
77 76 ssrdv ( 𝜑 → ( 𝐺 tsums 𝐹 ) ⊆ ( ( cls ‘ 𝐽 ) ‘ { 𝑋 } ) )
78 1 2 3 20 5 6 7 tsmscls ( 𝜑 → ( ( cls ‘ 𝐽 ) ‘ { 𝑋 } ) ⊆ ( 𝐺 tsums 𝐹 ) )
79 77 78 eqssd ( 𝜑 → ( 𝐺 tsums 𝐹 ) = ( ( cls ‘ 𝐽 ) ‘ { 𝑋 } ) )