| Step | Hyp | Ref | Expression | 
						
							| 1 |  | tgqioo.1 | ⊢ 𝑄  =  ( topGen ‘ ( (,)  “  ( ℚ  ×  ℚ ) ) ) | 
						
							| 2 |  | imassrn | ⊢ ( (,)  “  ( ℚ  ×  ℚ ) )  ⊆  ran  (,) | 
						
							| 3 |  | ioof | ⊢ (,) : ( ℝ*  ×  ℝ* ) ⟶ 𝒫  ℝ | 
						
							| 4 |  | ffn | ⊢ ( (,) : ( ℝ*  ×  ℝ* ) ⟶ 𝒫  ℝ  →  (,)  Fn  ( ℝ*  ×  ℝ* ) ) | 
						
							| 5 | 3 4 | ax-mp | ⊢ (,)  Fn  ( ℝ*  ×  ℝ* ) | 
						
							| 6 |  | simpll | ⊢ ( ( ( 𝑥  ∈  ℝ*  ∧  𝑦  ∈  ℝ* )  ∧  𝑧  ∈  ( 𝑥 (,) 𝑦 ) )  →  𝑥  ∈  ℝ* ) | 
						
							| 7 |  | elioo1 | ⊢ ( ( 𝑥  ∈  ℝ*  ∧  𝑦  ∈  ℝ* )  →  ( 𝑧  ∈  ( 𝑥 (,) 𝑦 )  ↔  ( 𝑧  ∈  ℝ*  ∧  𝑥  <  𝑧  ∧  𝑧  <  𝑦 ) ) ) | 
						
							| 8 | 7 | biimpa | ⊢ ( ( ( 𝑥  ∈  ℝ*  ∧  𝑦  ∈  ℝ* )  ∧  𝑧  ∈  ( 𝑥 (,) 𝑦 ) )  →  ( 𝑧  ∈  ℝ*  ∧  𝑥  <  𝑧  ∧  𝑧  <  𝑦 ) ) | 
						
							| 9 | 8 | simp1d | ⊢ ( ( ( 𝑥  ∈  ℝ*  ∧  𝑦  ∈  ℝ* )  ∧  𝑧  ∈  ( 𝑥 (,) 𝑦 ) )  →  𝑧  ∈  ℝ* ) | 
						
							| 10 | 8 | simp2d | ⊢ ( ( ( 𝑥  ∈  ℝ*  ∧  𝑦  ∈  ℝ* )  ∧  𝑧  ∈  ( 𝑥 (,) 𝑦 ) )  →  𝑥  <  𝑧 ) | 
						
							| 11 |  | qbtwnxr | ⊢ ( ( 𝑥  ∈  ℝ*  ∧  𝑧  ∈  ℝ*  ∧  𝑥  <  𝑧 )  →  ∃ 𝑢  ∈  ℚ ( 𝑥  <  𝑢  ∧  𝑢  <  𝑧 ) ) | 
						
							| 12 | 6 9 10 11 | syl3anc | ⊢ ( ( ( 𝑥  ∈  ℝ*  ∧  𝑦  ∈  ℝ* )  ∧  𝑧  ∈  ( 𝑥 (,) 𝑦 ) )  →  ∃ 𝑢  ∈  ℚ ( 𝑥  <  𝑢  ∧  𝑢  <  𝑧 ) ) | 
						
							| 13 |  | simplr | ⊢ ( ( ( 𝑥  ∈  ℝ*  ∧  𝑦  ∈  ℝ* )  ∧  𝑧  ∈  ( 𝑥 (,) 𝑦 ) )  →  𝑦  ∈  ℝ* ) | 
						
							| 14 | 8 | simp3d | ⊢ ( ( ( 𝑥  ∈  ℝ*  ∧  𝑦  ∈  ℝ* )  ∧  𝑧  ∈  ( 𝑥 (,) 𝑦 ) )  →  𝑧  <  𝑦 ) | 
						
							| 15 |  | qbtwnxr | ⊢ ( ( 𝑧  ∈  ℝ*  ∧  𝑦  ∈  ℝ*  ∧  𝑧  <  𝑦 )  →  ∃ 𝑣  ∈  ℚ ( 𝑧  <  𝑣  ∧  𝑣  <  𝑦 ) ) | 
						
							| 16 | 9 13 14 15 | syl3anc | ⊢ ( ( ( 𝑥  ∈  ℝ*  ∧  𝑦  ∈  ℝ* )  ∧  𝑧  ∈  ( 𝑥 (,) 𝑦 ) )  →  ∃ 𝑣  ∈  ℚ ( 𝑧  <  𝑣  ∧  𝑣  <  𝑦 ) ) | 
						
							| 17 |  | reeanv | ⊢ ( ∃ 𝑢  ∈  ℚ ∃ 𝑣  ∈  ℚ ( ( 𝑥  <  𝑢  ∧  𝑢  <  𝑧 )  ∧  ( 𝑧  <  𝑣  ∧  𝑣  <  𝑦 ) )  ↔  ( ∃ 𝑢  ∈  ℚ ( 𝑥  <  𝑢  ∧  𝑢  <  𝑧 )  ∧  ∃ 𝑣  ∈  ℚ ( 𝑧  <  𝑣  ∧  𝑣  <  𝑦 ) ) ) | 
						
							| 18 |  | df-ov | ⊢ ( 𝑢 (,) 𝑣 )  =  ( (,) ‘ 〈 𝑢 ,  𝑣 〉 ) | 
						
							| 19 |  | opelxpi | ⊢ ( ( 𝑢  ∈  ℚ  ∧  𝑣  ∈  ℚ )  →  〈 𝑢 ,  𝑣 〉  ∈  ( ℚ  ×  ℚ ) ) | 
						
							| 20 | 19 | 3ad2ant2 | ⊢ ( ( ( ( 𝑥  ∈  ℝ*  ∧  𝑦  ∈  ℝ* )  ∧  𝑧  ∈  ( 𝑥 (,) 𝑦 ) )  ∧  ( 𝑢  ∈  ℚ  ∧  𝑣  ∈  ℚ )  ∧  ( ( 𝑥  <  𝑢  ∧  𝑢  <  𝑧 )  ∧  ( 𝑧  <  𝑣  ∧  𝑣  <  𝑦 ) ) )  →  〈 𝑢 ,  𝑣 〉  ∈  ( ℚ  ×  ℚ ) ) | 
						
							| 21 |  | ffun | ⊢ ( (,) : ( ℝ*  ×  ℝ* ) ⟶ 𝒫  ℝ  →  Fun  (,) ) | 
						
							| 22 | 3 21 | ax-mp | ⊢ Fun  (,) | 
						
							| 23 |  | qssre | ⊢ ℚ  ⊆  ℝ | 
						
							| 24 |  | ressxr | ⊢ ℝ  ⊆  ℝ* | 
						
							| 25 | 23 24 | sstri | ⊢ ℚ  ⊆  ℝ* | 
						
							| 26 |  | xpss12 | ⊢ ( ( ℚ  ⊆  ℝ*  ∧  ℚ  ⊆  ℝ* )  →  ( ℚ  ×  ℚ )  ⊆  ( ℝ*  ×  ℝ* ) ) | 
						
							| 27 | 25 25 26 | mp2an | ⊢ ( ℚ  ×  ℚ )  ⊆  ( ℝ*  ×  ℝ* ) | 
						
							| 28 | 3 | fdmi | ⊢ dom  (,)  =  ( ℝ*  ×  ℝ* ) | 
						
							| 29 | 27 28 | sseqtrri | ⊢ ( ℚ  ×  ℚ )  ⊆  dom  (,) | 
						
							| 30 |  | funfvima2 | ⊢ ( ( Fun  (,)  ∧  ( ℚ  ×  ℚ )  ⊆  dom  (,) )  →  ( 〈 𝑢 ,  𝑣 〉  ∈  ( ℚ  ×  ℚ )  →  ( (,) ‘ 〈 𝑢 ,  𝑣 〉 )  ∈  ( (,)  “  ( ℚ  ×  ℚ ) ) ) ) | 
						
							| 31 | 22 29 30 | mp2an | ⊢ ( 〈 𝑢 ,  𝑣 〉  ∈  ( ℚ  ×  ℚ )  →  ( (,) ‘ 〈 𝑢 ,  𝑣 〉 )  ∈  ( (,)  “  ( ℚ  ×  ℚ ) ) ) | 
						
							| 32 | 20 31 | syl | ⊢ ( ( ( ( 𝑥  ∈  ℝ*  ∧  𝑦  ∈  ℝ* )  ∧  𝑧  ∈  ( 𝑥 (,) 𝑦 ) )  ∧  ( 𝑢  ∈  ℚ  ∧  𝑣  ∈  ℚ )  ∧  ( ( 𝑥  <  𝑢  ∧  𝑢  <  𝑧 )  ∧  ( 𝑧  <  𝑣  ∧  𝑣  <  𝑦 ) ) )  →  ( (,) ‘ 〈 𝑢 ,  𝑣 〉 )  ∈  ( (,)  “  ( ℚ  ×  ℚ ) ) ) | 
						
							| 33 | 18 32 | eqeltrid | ⊢ ( ( ( ( 𝑥  ∈  ℝ*  ∧  𝑦  ∈  ℝ* )  ∧  𝑧  ∈  ( 𝑥 (,) 𝑦 ) )  ∧  ( 𝑢  ∈  ℚ  ∧  𝑣  ∈  ℚ )  ∧  ( ( 𝑥  <  𝑢  ∧  𝑢  <  𝑧 )  ∧  ( 𝑧  <  𝑣  ∧  𝑣  <  𝑦 ) ) )  →  ( 𝑢 (,) 𝑣 )  ∈  ( (,)  “  ( ℚ  ×  ℚ ) ) ) | 
						
							| 34 | 9 | 3ad2ant1 | ⊢ ( ( ( ( 𝑥  ∈  ℝ*  ∧  𝑦  ∈  ℝ* )  ∧  𝑧  ∈  ( 𝑥 (,) 𝑦 ) )  ∧  ( 𝑢  ∈  ℚ  ∧  𝑣  ∈  ℚ )  ∧  ( ( 𝑥  <  𝑢  ∧  𝑢  <  𝑧 )  ∧  ( 𝑧  <  𝑣  ∧  𝑣  <  𝑦 ) ) )  →  𝑧  ∈  ℝ* ) | 
						
							| 35 |  | simp3lr | ⊢ ( ( ( ( 𝑥  ∈  ℝ*  ∧  𝑦  ∈  ℝ* )  ∧  𝑧  ∈  ( 𝑥 (,) 𝑦 ) )  ∧  ( 𝑢  ∈  ℚ  ∧  𝑣  ∈  ℚ )  ∧  ( ( 𝑥  <  𝑢  ∧  𝑢  <  𝑧 )  ∧  ( 𝑧  <  𝑣  ∧  𝑣  <  𝑦 ) ) )  →  𝑢  <  𝑧 ) | 
						
							| 36 |  | simp3rl | ⊢ ( ( ( ( 𝑥  ∈  ℝ*  ∧  𝑦  ∈  ℝ* )  ∧  𝑧  ∈  ( 𝑥 (,) 𝑦 ) )  ∧  ( 𝑢  ∈  ℚ  ∧  𝑣  ∈  ℚ )  ∧  ( ( 𝑥  <  𝑢  ∧  𝑢  <  𝑧 )  ∧  ( 𝑧  <  𝑣  ∧  𝑣  <  𝑦 ) ) )  →  𝑧  <  𝑣 ) | 
						
							| 37 |  | simp2l | ⊢ ( ( ( ( 𝑥  ∈  ℝ*  ∧  𝑦  ∈  ℝ* )  ∧  𝑧  ∈  ( 𝑥 (,) 𝑦 ) )  ∧  ( 𝑢  ∈  ℚ  ∧  𝑣  ∈  ℚ )  ∧  ( ( 𝑥  <  𝑢  ∧  𝑢  <  𝑧 )  ∧  ( 𝑧  <  𝑣  ∧  𝑣  <  𝑦 ) ) )  →  𝑢  ∈  ℚ ) | 
						
							| 38 | 25 37 | sselid | ⊢ ( ( ( ( 𝑥  ∈  ℝ*  ∧  𝑦  ∈  ℝ* )  ∧  𝑧  ∈  ( 𝑥 (,) 𝑦 ) )  ∧  ( 𝑢  ∈  ℚ  ∧  𝑣  ∈  ℚ )  ∧  ( ( 𝑥  <  𝑢  ∧  𝑢  <  𝑧 )  ∧  ( 𝑧  <  𝑣  ∧  𝑣  <  𝑦 ) ) )  →  𝑢  ∈  ℝ* ) | 
						
							| 39 |  | simp2r | ⊢ ( ( ( ( 𝑥  ∈  ℝ*  ∧  𝑦  ∈  ℝ* )  ∧  𝑧  ∈  ( 𝑥 (,) 𝑦 ) )  ∧  ( 𝑢  ∈  ℚ  ∧  𝑣  ∈  ℚ )  ∧  ( ( 𝑥  <  𝑢  ∧  𝑢  <  𝑧 )  ∧  ( 𝑧  <  𝑣  ∧  𝑣  <  𝑦 ) ) )  →  𝑣  ∈  ℚ ) | 
						
							| 40 | 25 39 | sselid | ⊢ ( ( ( ( 𝑥  ∈  ℝ*  ∧  𝑦  ∈  ℝ* )  ∧  𝑧  ∈  ( 𝑥 (,) 𝑦 ) )  ∧  ( 𝑢  ∈  ℚ  ∧  𝑣  ∈  ℚ )  ∧  ( ( 𝑥  <  𝑢  ∧  𝑢  <  𝑧 )  ∧  ( 𝑧  <  𝑣  ∧  𝑣  <  𝑦 ) ) )  →  𝑣  ∈  ℝ* ) | 
						
							| 41 |  | elioo1 | ⊢ ( ( 𝑢  ∈  ℝ*  ∧  𝑣  ∈  ℝ* )  →  ( 𝑧  ∈  ( 𝑢 (,) 𝑣 )  ↔  ( 𝑧  ∈  ℝ*  ∧  𝑢  <  𝑧  ∧  𝑧  <  𝑣 ) ) ) | 
						
							| 42 | 38 40 41 | syl2anc | ⊢ ( ( ( ( 𝑥  ∈  ℝ*  ∧  𝑦  ∈  ℝ* )  ∧  𝑧  ∈  ( 𝑥 (,) 𝑦 ) )  ∧  ( 𝑢  ∈  ℚ  ∧  𝑣  ∈  ℚ )  ∧  ( ( 𝑥  <  𝑢  ∧  𝑢  <  𝑧 )  ∧  ( 𝑧  <  𝑣  ∧  𝑣  <  𝑦 ) ) )  →  ( 𝑧  ∈  ( 𝑢 (,) 𝑣 )  ↔  ( 𝑧  ∈  ℝ*  ∧  𝑢  <  𝑧  ∧  𝑧  <  𝑣 ) ) ) | 
						
							| 43 | 34 35 36 42 | mpbir3and | ⊢ ( ( ( ( 𝑥  ∈  ℝ*  ∧  𝑦  ∈  ℝ* )  ∧  𝑧  ∈  ( 𝑥 (,) 𝑦 ) )  ∧  ( 𝑢  ∈  ℚ  ∧  𝑣  ∈  ℚ )  ∧  ( ( 𝑥  <  𝑢  ∧  𝑢  <  𝑧 )  ∧  ( 𝑧  <  𝑣  ∧  𝑣  <  𝑦 ) ) )  →  𝑧  ∈  ( 𝑢 (,) 𝑣 ) ) | 
						
							| 44 | 6 | 3ad2ant1 | ⊢ ( ( ( ( 𝑥  ∈  ℝ*  ∧  𝑦  ∈  ℝ* )  ∧  𝑧  ∈  ( 𝑥 (,) 𝑦 ) )  ∧  ( 𝑢  ∈  ℚ  ∧  𝑣  ∈  ℚ )  ∧  ( ( 𝑥  <  𝑢  ∧  𝑢  <  𝑧 )  ∧  ( 𝑧  <  𝑣  ∧  𝑣  <  𝑦 ) ) )  →  𝑥  ∈  ℝ* ) | 
						
							| 45 |  | simp3ll | ⊢ ( ( ( ( 𝑥  ∈  ℝ*  ∧  𝑦  ∈  ℝ* )  ∧  𝑧  ∈  ( 𝑥 (,) 𝑦 ) )  ∧  ( 𝑢  ∈  ℚ  ∧  𝑣  ∈  ℚ )  ∧  ( ( 𝑥  <  𝑢  ∧  𝑢  <  𝑧 )  ∧  ( 𝑧  <  𝑣  ∧  𝑣  <  𝑦 ) ) )  →  𝑥  <  𝑢 ) | 
						
							| 46 | 44 38 45 | xrltled | ⊢ ( ( ( ( 𝑥  ∈  ℝ*  ∧  𝑦  ∈  ℝ* )  ∧  𝑧  ∈  ( 𝑥 (,) 𝑦 ) )  ∧  ( 𝑢  ∈  ℚ  ∧  𝑣  ∈  ℚ )  ∧  ( ( 𝑥  <  𝑢  ∧  𝑢  <  𝑧 )  ∧  ( 𝑧  <  𝑣  ∧  𝑣  <  𝑦 ) ) )  →  𝑥  ≤  𝑢 ) | 
						
							| 47 |  | iooss1 | ⊢ ( ( 𝑥  ∈  ℝ*  ∧  𝑥  ≤  𝑢 )  →  ( 𝑢 (,) 𝑣 )  ⊆  ( 𝑥 (,) 𝑣 ) ) | 
						
							| 48 | 44 46 47 | syl2anc | ⊢ ( ( ( ( 𝑥  ∈  ℝ*  ∧  𝑦  ∈  ℝ* )  ∧  𝑧  ∈  ( 𝑥 (,) 𝑦 ) )  ∧  ( 𝑢  ∈  ℚ  ∧  𝑣  ∈  ℚ )  ∧  ( ( 𝑥  <  𝑢  ∧  𝑢  <  𝑧 )  ∧  ( 𝑧  <  𝑣  ∧  𝑣  <  𝑦 ) ) )  →  ( 𝑢 (,) 𝑣 )  ⊆  ( 𝑥 (,) 𝑣 ) ) | 
						
							| 49 | 13 | 3ad2ant1 | ⊢ ( ( ( ( 𝑥  ∈  ℝ*  ∧  𝑦  ∈  ℝ* )  ∧  𝑧  ∈  ( 𝑥 (,) 𝑦 ) )  ∧  ( 𝑢  ∈  ℚ  ∧  𝑣  ∈  ℚ )  ∧  ( ( 𝑥  <  𝑢  ∧  𝑢  <  𝑧 )  ∧  ( 𝑧  <  𝑣  ∧  𝑣  <  𝑦 ) ) )  →  𝑦  ∈  ℝ* ) | 
						
							| 50 |  | simp3rr | ⊢ ( ( ( ( 𝑥  ∈  ℝ*  ∧  𝑦  ∈  ℝ* )  ∧  𝑧  ∈  ( 𝑥 (,) 𝑦 ) )  ∧  ( 𝑢  ∈  ℚ  ∧  𝑣  ∈  ℚ )  ∧  ( ( 𝑥  <  𝑢  ∧  𝑢  <  𝑧 )  ∧  ( 𝑧  <  𝑣  ∧  𝑣  <  𝑦 ) ) )  →  𝑣  <  𝑦 ) | 
						
							| 51 | 40 49 50 | xrltled | ⊢ ( ( ( ( 𝑥  ∈  ℝ*  ∧  𝑦  ∈  ℝ* )  ∧  𝑧  ∈  ( 𝑥 (,) 𝑦 ) )  ∧  ( 𝑢  ∈  ℚ  ∧  𝑣  ∈  ℚ )  ∧  ( ( 𝑥  <  𝑢  ∧  𝑢  <  𝑧 )  ∧  ( 𝑧  <  𝑣  ∧  𝑣  <  𝑦 ) ) )  →  𝑣  ≤  𝑦 ) | 
						
							| 52 |  | iooss2 | ⊢ ( ( 𝑦  ∈  ℝ*  ∧  𝑣  ≤  𝑦 )  →  ( 𝑥 (,) 𝑣 )  ⊆  ( 𝑥 (,) 𝑦 ) ) | 
						
							| 53 | 49 51 52 | syl2anc | ⊢ ( ( ( ( 𝑥  ∈  ℝ*  ∧  𝑦  ∈  ℝ* )  ∧  𝑧  ∈  ( 𝑥 (,) 𝑦 ) )  ∧  ( 𝑢  ∈  ℚ  ∧  𝑣  ∈  ℚ )  ∧  ( ( 𝑥  <  𝑢  ∧  𝑢  <  𝑧 )  ∧  ( 𝑧  <  𝑣  ∧  𝑣  <  𝑦 ) ) )  →  ( 𝑥 (,) 𝑣 )  ⊆  ( 𝑥 (,) 𝑦 ) ) | 
						
							| 54 | 48 53 | sstrd | ⊢ ( ( ( ( 𝑥  ∈  ℝ*  ∧  𝑦  ∈  ℝ* )  ∧  𝑧  ∈  ( 𝑥 (,) 𝑦 ) )  ∧  ( 𝑢  ∈  ℚ  ∧  𝑣  ∈  ℚ )  ∧  ( ( 𝑥  <  𝑢  ∧  𝑢  <  𝑧 )  ∧  ( 𝑧  <  𝑣  ∧  𝑣  <  𝑦 ) ) )  →  ( 𝑢 (,) 𝑣 )  ⊆  ( 𝑥 (,) 𝑦 ) ) | 
						
							| 55 |  | eleq2 | ⊢ ( 𝑤  =  ( 𝑢 (,) 𝑣 )  →  ( 𝑧  ∈  𝑤  ↔  𝑧  ∈  ( 𝑢 (,) 𝑣 ) ) ) | 
						
							| 56 |  | sseq1 | ⊢ ( 𝑤  =  ( 𝑢 (,) 𝑣 )  →  ( 𝑤  ⊆  ( 𝑥 (,) 𝑦 )  ↔  ( 𝑢 (,) 𝑣 )  ⊆  ( 𝑥 (,) 𝑦 ) ) ) | 
						
							| 57 | 55 56 | anbi12d | ⊢ ( 𝑤  =  ( 𝑢 (,) 𝑣 )  →  ( ( 𝑧  ∈  𝑤  ∧  𝑤  ⊆  ( 𝑥 (,) 𝑦 ) )  ↔  ( 𝑧  ∈  ( 𝑢 (,) 𝑣 )  ∧  ( 𝑢 (,) 𝑣 )  ⊆  ( 𝑥 (,) 𝑦 ) ) ) ) | 
						
							| 58 | 57 | rspcev | ⊢ ( ( ( 𝑢 (,) 𝑣 )  ∈  ( (,)  “  ( ℚ  ×  ℚ ) )  ∧  ( 𝑧  ∈  ( 𝑢 (,) 𝑣 )  ∧  ( 𝑢 (,) 𝑣 )  ⊆  ( 𝑥 (,) 𝑦 ) ) )  →  ∃ 𝑤  ∈  ( (,)  “  ( ℚ  ×  ℚ ) ) ( 𝑧  ∈  𝑤  ∧  𝑤  ⊆  ( 𝑥 (,) 𝑦 ) ) ) | 
						
							| 59 | 33 43 54 58 | syl12anc | ⊢ ( ( ( ( 𝑥  ∈  ℝ*  ∧  𝑦  ∈  ℝ* )  ∧  𝑧  ∈  ( 𝑥 (,) 𝑦 ) )  ∧  ( 𝑢  ∈  ℚ  ∧  𝑣  ∈  ℚ )  ∧  ( ( 𝑥  <  𝑢  ∧  𝑢  <  𝑧 )  ∧  ( 𝑧  <  𝑣  ∧  𝑣  <  𝑦 ) ) )  →  ∃ 𝑤  ∈  ( (,)  “  ( ℚ  ×  ℚ ) ) ( 𝑧  ∈  𝑤  ∧  𝑤  ⊆  ( 𝑥 (,) 𝑦 ) ) ) | 
						
							| 60 | 59 | 3exp | ⊢ ( ( ( 𝑥  ∈  ℝ*  ∧  𝑦  ∈  ℝ* )  ∧  𝑧  ∈  ( 𝑥 (,) 𝑦 ) )  →  ( ( 𝑢  ∈  ℚ  ∧  𝑣  ∈  ℚ )  →  ( ( ( 𝑥  <  𝑢  ∧  𝑢  <  𝑧 )  ∧  ( 𝑧  <  𝑣  ∧  𝑣  <  𝑦 ) )  →  ∃ 𝑤  ∈  ( (,)  “  ( ℚ  ×  ℚ ) ) ( 𝑧  ∈  𝑤  ∧  𝑤  ⊆  ( 𝑥 (,) 𝑦 ) ) ) ) ) | 
						
							| 61 | 60 | rexlimdvv | ⊢ ( ( ( 𝑥  ∈  ℝ*  ∧  𝑦  ∈  ℝ* )  ∧  𝑧  ∈  ( 𝑥 (,) 𝑦 ) )  →  ( ∃ 𝑢  ∈  ℚ ∃ 𝑣  ∈  ℚ ( ( 𝑥  <  𝑢  ∧  𝑢  <  𝑧 )  ∧  ( 𝑧  <  𝑣  ∧  𝑣  <  𝑦 ) )  →  ∃ 𝑤  ∈  ( (,)  “  ( ℚ  ×  ℚ ) ) ( 𝑧  ∈  𝑤  ∧  𝑤  ⊆  ( 𝑥 (,) 𝑦 ) ) ) ) | 
						
							| 62 | 17 61 | biimtrrid | ⊢ ( ( ( 𝑥  ∈  ℝ*  ∧  𝑦  ∈  ℝ* )  ∧  𝑧  ∈  ( 𝑥 (,) 𝑦 ) )  →  ( ( ∃ 𝑢  ∈  ℚ ( 𝑥  <  𝑢  ∧  𝑢  <  𝑧 )  ∧  ∃ 𝑣  ∈  ℚ ( 𝑧  <  𝑣  ∧  𝑣  <  𝑦 ) )  →  ∃ 𝑤  ∈  ( (,)  “  ( ℚ  ×  ℚ ) ) ( 𝑧  ∈  𝑤  ∧  𝑤  ⊆  ( 𝑥 (,) 𝑦 ) ) ) ) | 
						
							| 63 | 12 16 62 | mp2and | ⊢ ( ( ( 𝑥  ∈  ℝ*  ∧  𝑦  ∈  ℝ* )  ∧  𝑧  ∈  ( 𝑥 (,) 𝑦 ) )  →  ∃ 𝑤  ∈  ( (,)  “  ( ℚ  ×  ℚ ) ) ( 𝑧  ∈  𝑤  ∧  𝑤  ⊆  ( 𝑥 (,) 𝑦 ) ) ) | 
						
							| 64 | 63 | ralrimiva | ⊢ ( ( 𝑥  ∈  ℝ*  ∧  𝑦  ∈  ℝ* )  →  ∀ 𝑧  ∈  ( 𝑥 (,) 𝑦 ) ∃ 𝑤  ∈  ( (,)  “  ( ℚ  ×  ℚ ) ) ( 𝑧  ∈  𝑤  ∧  𝑤  ⊆  ( 𝑥 (,) 𝑦 ) ) ) | 
						
							| 65 |  | qtopbas | ⊢ ( (,)  “  ( ℚ  ×  ℚ ) )  ∈  TopBases | 
						
							| 66 |  | eltg2b | ⊢ ( ( (,)  “  ( ℚ  ×  ℚ ) )  ∈  TopBases  →  ( ( 𝑥 (,) 𝑦 )  ∈  ( topGen ‘ ( (,)  “  ( ℚ  ×  ℚ ) ) )  ↔  ∀ 𝑧  ∈  ( 𝑥 (,) 𝑦 ) ∃ 𝑤  ∈  ( (,)  “  ( ℚ  ×  ℚ ) ) ( 𝑧  ∈  𝑤  ∧  𝑤  ⊆  ( 𝑥 (,) 𝑦 ) ) ) ) | 
						
							| 67 | 65 66 | ax-mp | ⊢ ( ( 𝑥 (,) 𝑦 )  ∈  ( topGen ‘ ( (,)  “  ( ℚ  ×  ℚ ) ) )  ↔  ∀ 𝑧  ∈  ( 𝑥 (,) 𝑦 ) ∃ 𝑤  ∈  ( (,)  “  ( ℚ  ×  ℚ ) ) ( 𝑧  ∈  𝑤  ∧  𝑤  ⊆  ( 𝑥 (,) 𝑦 ) ) ) | 
						
							| 68 | 64 67 | sylibr | ⊢ ( ( 𝑥  ∈  ℝ*  ∧  𝑦  ∈  ℝ* )  →  ( 𝑥 (,) 𝑦 )  ∈  ( topGen ‘ ( (,)  “  ( ℚ  ×  ℚ ) ) ) ) | 
						
							| 69 | 68 | rgen2 | ⊢ ∀ 𝑥  ∈  ℝ* ∀ 𝑦  ∈  ℝ* ( 𝑥 (,) 𝑦 )  ∈  ( topGen ‘ ( (,)  “  ( ℚ  ×  ℚ ) ) ) | 
						
							| 70 |  | ffnov | ⊢ ( (,) : ( ℝ*  ×  ℝ* ) ⟶ ( topGen ‘ ( (,)  “  ( ℚ  ×  ℚ ) ) )  ↔  ( (,)  Fn  ( ℝ*  ×  ℝ* )  ∧  ∀ 𝑥  ∈  ℝ* ∀ 𝑦  ∈  ℝ* ( 𝑥 (,) 𝑦 )  ∈  ( topGen ‘ ( (,)  “  ( ℚ  ×  ℚ ) ) ) ) ) | 
						
							| 71 | 5 69 70 | mpbir2an | ⊢ (,) : ( ℝ*  ×  ℝ* ) ⟶ ( topGen ‘ ( (,)  “  ( ℚ  ×  ℚ ) ) ) | 
						
							| 72 |  | frn | ⊢ ( (,) : ( ℝ*  ×  ℝ* ) ⟶ ( topGen ‘ ( (,)  “  ( ℚ  ×  ℚ ) ) )  →  ran  (,)  ⊆  ( topGen ‘ ( (,)  “  ( ℚ  ×  ℚ ) ) ) ) | 
						
							| 73 | 71 72 | ax-mp | ⊢ ran  (,)  ⊆  ( topGen ‘ ( (,)  “  ( ℚ  ×  ℚ ) ) ) | 
						
							| 74 |  | 2basgen | ⊢ ( ( ( (,)  “  ( ℚ  ×  ℚ ) )  ⊆  ran  (,)  ∧  ran  (,)  ⊆  ( topGen ‘ ( (,)  “  ( ℚ  ×  ℚ ) ) ) )  →  ( topGen ‘ ( (,)  “  ( ℚ  ×  ℚ ) ) )  =  ( topGen ‘ ran  (,) ) ) | 
						
							| 75 | 2 73 74 | mp2an | ⊢ ( topGen ‘ ( (,)  “  ( ℚ  ×  ℚ ) ) )  =  ( topGen ‘ ran  (,) ) | 
						
							| 76 | 1 75 | eqtr2i | ⊢ ( topGen ‘ ran  (,) )  =  𝑄 |