Step |
Hyp |
Ref |
Expression |
1 |
|
tgqioo.1 |
⊢ 𝑄 = ( topGen ‘ ( (,) “ ( ℚ × ℚ ) ) ) |
2 |
|
imassrn |
⊢ ( (,) “ ( ℚ × ℚ ) ) ⊆ ran (,) |
3 |
|
ioof |
⊢ (,) : ( ℝ* × ℝ* ) ⟶ 𝒫 ℝ |
4 |
|
ffn |
⊢ ( (,) : ( ℝ* × ℝ* ) ⟶ 𝒫 ℝ → (,) Fn ( ℝ* × ℝ* ) ) |
5 |
3 4
|
ax-mp |
⊢ (,) Fn ( ℝ* × ℝ* ) |
6 |
|
simpll |
⊢ ( ( ( 𝑥 ∈ ℝ* ∧ 𝑦 ∈ ℝ* ) ∧ 𝑧 ∈ ( 𝑥 (,) 𝑦 ) ) → 𝑥 ∈ ℝ* ) |
7 |
|
elioo1 |
⊢ ( ( 𝑥 ∈ ℝ* ∧ 𝑦 ∈ ℝ* ) → ( 𝑧 ∈ ( 𝑥 (,) 𝑦 ) ↔ ( 𝑧 ∈ ℝ* ∧ 𝑥 < 𝑧 ∧ 𝑧 < 𝑦 ) ) ) |
8 |
7
|
biimpa |
⊢ ( ( ( 𝑥 ∈ ℝ* ∧ 𝑦 ∈ ℝ* ) ∧ 𝑧 ∈ ( 𝑥 (,) 𝑦 ) ) → ( 𝑧 ∈ ℝ* ∧ 𝑥 < 𝑧 ∧ 𝑧 < 𝑦 ) ) |
9 |
8
|
simp1d |
⊢ ( ( ( 𝑥 ∈ ℝ* ∧ 𝑦 ∈ ℝ* ) ∧ 𝑧 ∈ ( 𝑥 (,) 𝑦 ) ) → 𝑧 ∈ ℝ* ) |
10 |
8
|
simp2d |
⊢ ( ( ( 𝑥 ∈ ℝ* ∧ 𝑦 ∈ ℝ* ) ∧ 𝑧 ∈ ( 𝑥 (,) 𝑦 ) ) → 𝑥 < 𝑧 ) |
11 |
|
qbtwnxr |
⊢ ( ( 𝑥 ∈ ℝ* ∧ 𝑧 ∈ ℝ* ∧ 𝑥 < 𝑧 ) → ∃ 𝑢 ∈ ℚ ( 𝑥 < 𝑢 ∧ 𝑢 < 𝑧 ) ) |
12 |
6 9 10 11
|
syl3anc |
⊢ ( ( ( 𝑥 ∈ ℝ* ∧ 𝑦 ∈ ℝ* ) ∧ 𝑧 ∈ ( 𝑥 (,) 𝑦 ) ) → ∃ 𝑢 ∈ ℚ ( 𝑥 < 𝑢 ∧ 𝑢 < 𝑧 ) ) |
13 |
|
simplr |
⊢ ( ( ( 𝑥 ∈ ℝ* ∧ 𝑦 ∈ ℝ* ) ∧ 𝑧 ∈ ( 𝑥 (,) 𝑦 ) ) → 𝑦 ∈ ℝ* ) |
14 |
8
|
simp3d |
⊢ ( ( ( 𝑥 ∈ ℝ* ∧ 𝑦 ∈ ℝ* ) ∧ 𝑧 ∈ ( 𝑥 (,) 𝑦 ) ) → 𝑧 < 𝑦 ) |
15 |
|
qbtwnxr |
⊢ ( ( 𝑧 ∈ ℝ* ∧ 𝑦 ∈ ℝ* ∧ 𝑧 < 𝑦 ) → ∃ 𝑣 ∈ ℚ ( 𝑧 < 𝑣 ∧ 𝑣 < 𝑦 ) ) |
16 |
9 13 14 15
|
syl3anc |
⊢ ( ( ( 𝑥 ∈ ℝ* ∧ 𝑦 ∈ ℝ* ) ∧ 𝑧 ∈ ( 𝑥 (,) 𝑦 ) ) → ∃ 𝑣 ∈ ℚ ( 𝑧 < 𝑣 ∧ 𝑣 < 𝑦 ) ) |
17 |
|
reeanv |
⊢ ( ∃ 𝑢 ∈ ℚ ∃ 𝑣 ∈ ℚ ( ( 𝑥 < 𝑢 ∧ 𝑢 < 𝑧 ) ∧ ( 𝑧 < 𝑣 ∧ 𝑣 < 𝑦 ) ) ↔ ( ∃ 𝑢 ∈ ℚ ( 𝑥 < 𝑢 ∧ 𝑢 < 𝑧 ) ∧ ∃ 𝑣 ∈ ℚ ( 𝑧 < 𝑣 ∧ 𝑣 < 𝑦 ) ) ) |
18 |
|
df-ov |
⊢ ( 𝑢 (,) 𝑣 ) = ( (,) ‘ 〈 𝑢 , 𝑣 〉 ) |
19 |
|
opelxpi |
⊢ ( ( 𝑢 ∈ ℚ ∧ 𝑣 ∈ ℚ ) → 〈 𝑢 , 𝑣 〉 ∈ ( ℚ × ℚ ) ) |
20 |
19
|
3ad2ant2 |
⊢ ( ( ( ( 𝑥 ∈ ℝ* ∧ 𝑦 ∈ ℝ* ) ∧ 𝑧 ∈ ( 𝑥 (,) 𝑦 ) ) ∧ ( 𝑢 ∈ ℚ ∧ 𝑣 ∈ ℚ ) ∧ ( ( 𝑥 < 𝑢 ∧ 𝑢 < 𝑧 ) ∧ ( 𝑧 < 𝑣 ∧ 𝑣 < 𝑦 ) ) ) → 〈 𝑢 , 𝑣 〉 ∈ ( ℚ × ℚ ) ) |
21 |
|
ffun |
⊢ ( (,) : ( ℝ* × ℝ* ) ⟶ 𝒫 ℝ → Fun (,) ) |
22 |
3 21
|
ax-mp |
⊢ Fun (,) |
23 |
|
qssre |
⊢ ℚ ⊆ ℝ |
24 |
|
ressxr |
⊢ ℝ ⊆ ℝ* |
25 |
23 24
|
sstri |
⊢ ℚ ⊆ ℝ* |
26 |
|
xpss12 |
⊢ ( ( ℚ ⊆ ℝ* ∧ ℚ ⊆ ℝ* ) → ( ℚ × ℚ ) ⊆ ( ℝ* × ℝ* ) ) |
27 |
25 25 26
|
mp2an |
⊢ ( ℚ × ℚ ) ⊆ ( ℝ* × ℝ* ) |
28 |
3
|
fdmi |
⊢ dom (,) = ( ℝ* × ℝ* ) |
29 |
27 28
|
sseqtrri |
⊢ ( ℚ × ℚ ) ⊆ dom (,) |
30 |
|
funfvima2 |
⊢ ( ( Fun (,) ∧ ( ℚ × ℚ ) ⊆ dom (,) ) → ( 〈 𝑢 , 𝑣 〉 ∈ ( ℚ × ℚ ) → ( (,) ‘ 〈 𝑢 , 𝑣 〉 ) ∈ ( (,) “ ( ℚ × ℚ ) ) ) ) |
31 |
22 29 30
|
mp2an |
⊢ ( 〈 𝑢 , 𝑣 〉 ∈ ( ℚ × ℚ ) → ( (,) ‘ 〈 𝑢 , 𝑣 〉 ) ∈ ( (,) “ ( ℚ × ℚ ) ) ) |
32 |
20 31
|
syl |
⊢ ( ( ( ( 𝑥 ∈ ℝ* ∧ 𝑦 ∈ ℝ* ) ∧ 𝑧 ∈ ( 𝑥 (,) 𝑦 ) ) ∧ ( 𝑢 ∈ ℚ ∧ 𝑣 ∈ ℚ ) ∧ ( ( 𝑥 < 𝑢 ∧ 𝑢 < 𝑧 ) ∧ ( 𝑧 < 𝑣 ∧ 𝑣 < 𝑦 ) ) ) → ( (,) ‘ 〈 𝑢 , 𝑣 〉 ) ∈ ( (,) “ ( ℚ × ℚ ) ) ) |
33 |
18 32
|
eqeltrid |
⊢ ( ( ( ( 𝑥 ∈ ℝ* ∧ 𝑦 ∈ ℝ* ) ∧ 𝑧 ∈ ( 𝑥 (,) 𝑦 ) ) ∧ ( 𝑢 ∈ ℚ ∧ 𝑣 ∈ ℚ ) ∧ ( ( 𝑥 < 𝑢 ∧ 𝑢 < 𝑧 ) ∧ ( 𝑧 < 𝑣 ∧ 𝑣 < 𝑦 ) ) ) → ( 𝑢 (,) 𝑣 ) ∈ ( (,) “ ( ℚ × ℚ ) ) ) |
34 |
9
|
3ad2ant1 |
⊢ ( ( ( ( 𝑥 ∈ ℝ* ∧ 𝑦 ∈ ℝ* ) ∧ 𝑧 ∈ ( 𝑥 (,) 𝑦 ) ) ∧ ( 𝑢 ∈ ℚ ∧ 𝑣 ∈ ℚ ) ∧ ( ( 𝑥 < 𝑢 ∧ 𝑢 < 𝑧 ) ∧ ( 𝑧 < 𝑣 ∧ 𝑣 < 𝑦 ) ) ) → 𝑧 ∈ ℝ* ) |
35 |
|
simp3lr |
⊢ ( ( ( ( 𝑥 ∈ ℝ* ∧ 𝑦 ∈ ℝ* ) ∧ 𝑧 ∈ ( 𝑥 (,) 𝑦 ) ) ∧ ( 𝑢 ∈ ℚ ∧ 𝑣 ∈ ℚ ) ∧ ( ( 𝑥 < 𝑢 ∧ 𝑢 < 𝑧 ) ∧ ( 𝑧 < 𝑣 ∧ 𝑣 < 𝑦 ) ) ) → 𝑢 < 𝑧 ) |
36 |
|
simp3rl |
⊢ ( ( ( ( 𝑥 ∈ ℝ* ∧ 𝑦 ∈ ℝ* ) ∧ 𝑧 ∈ ( 𝑥 (,) 𝑦 ) ) ∧ ( 𝑢 ∈ ℚ ∧ 𝑣 ∈ ℚ ) ∧ ( ( 𝑥 < 𝑢 ∧ 𝑢 < 𝑧 ) ∧ ( 𝑧 < 𝑣 ∧ 𝑣 < 𝑦 ) ) ) → 𝑧 < 𝑣 ) |
37 |
|
simp2l |
⊢ ( ( ( ( 𝑥 ∈ ℝ* ∧ 𝑦 ∈ ℝ* ) ∧ 𝑧 ∈ ( 𝑥 (,) 𝑦 ) ) ∧ ( 𝑢 ∈ ℚ ∧ 𝑣 ∈ ℚ ) ∧ ( ( 𝑥 < 𝑢 ∧ 𝑢 < 𝑧 ) ∧ ( 𝑧 < 𝑣 ∧ 𝑣 < 𝑦 ) ) ) → 𝑢 ∈ ℚ ) |
38 |
25 37
|
sselid |
⊢ ( ( ( ( 𝑥 ∈ ℝ* ∧ 𝑦 ∈ ℝ* ) ∧ 𝑧 ∈ ( 𝑥 (,) 𝑦 ) ) ∧ ( 𝑢 ∈ ℚ ∧ 𝑣 ∈ ℚ ) ∧ ( ( 𝑥 < 𝑢 ∧ 𝑢 < 𝑧 ) ∧ ( 𝑧 < 𝑣 ∧ 𝑣 < 𝑦 ) ) ) → 𝑢 ∈ ℝ* ) |
39 |
|
simp2r |
⊢ ( ( ( ( 𝑥 ∈ ℝ* ∧ 𝑦 ∈ ℝ* ) ∧ 𝑧 ∈ ( 𝑥 (,) 𝑦 ) ) ∧ ( 𝑢 ∈ ℚ ∧ 𝑣 ∈ ℚ ) ∧ ( ( 𝑥 < 𝑢 ∧ 𝑢 < 𝑧 ) ∧ ( 𝑧 < 𝑣 ∧ 𝑣 < 𝑦 ) ) ) → 𝑣 ∈ ℚ ) |
40 |
25 39
|
sselid |
⊢ ( ( ( ( 𝑥 ∈ ℝ* ∧ 𝑦 ∈ ℝ* ) ∧ 𝑧 ∈ ( 𝑥 (,) 𝑦 ) ) ∧ ( 𝑢 ∈ ℚ ∧ 𝑣 ∈ ℚ ) ∧ ( ( 𝑥 < 𝑢 ∧ 𝑢 < 𝑧 ) ∧ ( 𝑧 < 𝑣 ∧ 𝑣 < 𝑦 ) ) ) → 𝑣 ∈ ℝ* ) |
41 |
|
elioo1 |
⊢ ( ( 𝑢 ∈ ℝ* ∧ 𝑣 ∈ ℝ* ) → ( 𝑧 ∈ ( 𝑢 (,) 𝑣 ) ↔ ( 𝑧 ∈ ℝ* ∧ 𝑢 < 𝑧 ∧ 𝑧 < 𝑣 ) ) ) |
42 |
38 40 41
|
syl2anc |
⊢ ( ( ( ( 𝑥 ∈ ℝ* ∧ 𝑦 ∈ ℝ* ) ∧ 𝑧 ∈ ( 𝑥 (,) 𝑦 ) ) ∧ ( 𝑢 ∈ ℚ ∧ 𝑣 ∈ ℚ ) ∧ ( ( 𝑥 < 𝑢 ∧ 𝑢 < 𝑧 ) ∧ ( 𝑧 < 𝑣 ∧ 𝑣 < 𝑦 ) ) ) → ( 𝑧 ∈ ( 𝑢 (,) 𝑣 ) ↔ ( 𝑧 ∈ ℝ* ∧ 𝑢 < 𝑧 ∧ 𝑧 < 𝑣 ) ) ) |
43 |
34 35 36 42
|
mpbir3and |
⊢ ( ( ( ( 𝑥 ∈ ℝ* ∧ 𝑦 ∈ ℝ* ) ∧ 𝑧 ∈ ( 𝑥 (,) 𝑦 ) ) ∧ ( 𝑢 ∈ ℚ ∧ 𝑣 ∈ ℚ ) ∧ ( ( 𝑥 < 𝑢 ∧ 𝑢 < 𝑧 ) ∧ ( 𝑧 < 𝑣 ∧ 𝑣 < 𝑦 ) ) ) → 𝑧 ∈ ( 𝑢 (,) 𝑣 ) ) |
44 |
6
|
3ad2ant1 |
⊢ ( ( ( ( 𝑥 ∈ ℝ* ∧ 𝑦 ∈ ℝ* ) ∧ 𝑧 ∈ ( 𝑥 (,) 𝑦 ) ) ∧ ( 𝑢 ∈ ℚ ∧ 𝑣 ∈ ℚ ) ∧ ( ( 𝑥 < 𝑢 ∧ 𝑢 < 𝑧 ) ∧ ( 𝑧 < 𝑣 ∧ 𝑣 < 𝑦 ) ) ) → 𝑥 ∈ ℝ* ) |
45 |
|
simp3ll |
⊢ ( ( ( ( 𝑥 ∈ ℝ* ∧ 𝑦 ∈ ℝ* ) ∧ 𝑧 ∈ ( 𝑥 (,) 𝑦 ) ) ∧ ( 𝑢 ∈ ℚ ∧ 𝑣 ∈ ℚ ) ∧ ( ( 𝑥 < 𝑢 ∧ 𝑢 < 𝑧 ) ∧ ( 𝑧 < 𝑣 ∧ 𝑣 < 𝑦 ) ) ) → 𝑥 < 𝑢 ) |
46 |
44 38 45
|
xrltled |
⊢ ( ( ( ( 𝑥 ∈ ℝ* ∧ 𝑦 ∈ ℝ* ) ∧ 𝑧 ∈ ( 𝑥 (,) 𝑦 ) ) ∧ ( 𝑢 ∈ ℚ ∧ 𝑣 ∈ ℚ ) ∧ ( ( 𝑥 < 𝑢 ∧ 𝑢 < 𝑧 ) ∧ ( 𝑧 < 𝑣 ∧ 𝑣 < 𝑦 ) ) ) → 𝑥 ≤ 𝑢 ) |
47 |
|
iooss1 |
⊢ ( ( 𝑥 ∈ ℝ* ∧ 𝑥 ≤ 𝑢 ) → ( 𝑢 (,) 𝑣 ) ⊆ ( 𝑥 (,) 𝑣 ) ) |
48 |
44 46 47
|
syl2anc |
⊢ ( ( ( ( 𝑥 ∈ ℝ* ∧ 𝑦 ∈ ℝ* ) ∧ 𝑧 ∈ ( 𝑥 (,) 𝑦 ) ) ∧ ( 𝑢 ∈ ℚ ∧ 𝑣 ∈ ℚ ) ∧ ( ( 𝑥 < 𝑢 ∧ 𝑢 < 𝑧 ) ∧ ( 𝑧 < 𝑣 ∧ 𝑣 < 𝑦 ) ) ) → ( 𝑢 (,) 𝑣 ) ⊆ ( 𝑥 (,) 𝑣 ) ) |
49 |
13
|
3ad2ant1 |
⊢ ( ( ( ( 𝑥 ∈ ℝ* ∧ 𝑦 ∈ ℝ* ) ∧ 𝑧 ∈ ( 𝑥 (,) 𝑦 ) ) ∧ ( 𝑢 ∈ ℚ ∧ 𝑣 ∈ ℚ ) ∧ ( ( 𝑥 < 𝑢 ∧ 𝑢 < 𝑧 ) ∧ ( 𝑧 < 𝑣 ∧ 𝑣 < 𝑦 ) ) ) → 𝑦 ∈ ℝ* ) |
50 |
|
simp3rr |
⊢ ( ( ( ( 𝑥 ∈ ℝ* ∧ 𝑦 ∈ ℝ* ) ∧ 𝑧 ∈ ( 𝑥 (,) 𝑦 ) ) ∧ ( 𝑢 ∈ ℚ ∧ 𝑣 ∈ ℚ ) ∧ ( ( 𝑥 < 𝑢 ∧ 𝑢 < 𝑧 ) ∧ ( 𝑧 < 𝑣 ∧ 𝑣 < 𝑦 ) ) ) → 𝑣 < 𝑦 ) |
51 |
40 49 50
|
xrltled |
⊢ ( ( ( ( 𝑥 ∈ ℝ* ∧ 𝑦 ∈ ℝ* ) ∧ 𝑧 ∈ ( 𝑥 (,) 𝑦 ) ) ∧ ( 𝑢 ∈ ℚ ∧ 𝑣 ∈ ℚ ) ∧ ( ( 𝑥 < 𝑢 ∧ 𝑢 < 𝑧 ) ∧ ( 𝑧 < 𝑣 ∧ 𝑣 < 𝑦 ) ) ) → 𝑣 ≤ 𝑦 ) |
52 |
|
iooss2 |
⊢ ( ( 𝑦 ∈ ℝ* ∧ 𝑣 ≤ 𝑦 ) → ( 𝑥 (,) 𝑣 ) ⊆ ( 𝑥 (,) 𝑦 ) ) |
53 |
49 51 52
|
syl2anc |
⊢ ( ( ( ( 𝑥 ∈ ℝ* ∧ 𝑦 ∈ ℝ* ) ∧ 𝑧 ∈ ( 𝑥 (,) 𝑦 ) ) ∧ ( 𝑢 ∈ ℚ ∧ 𝑣 ∈ ℚ ) ∧ ( ( 𝑥 < 𝑢 ∧ 𝑢 < 𝑧 ) ∧ ( 𝑧 < 𝑣 ∧ 𝑣 < 𝑦 ) ) ) → ( 𝑥 (,) 𝑣 ) ⊆ ( 𝑥 (,) 𝑦 ) ) |
54 |
48 53
|
sstrd |
⊢ ( ( ( ( 𝑥 ∈ ℝ* ∧ 𝑦 ∈ ℝ* ) ∧ 𝑧 ∈ ( 𝑥 (,) 𝑦 ) ) ∧ ( 𝑢 ∈ ℚ ∧ 𝑣 ∈ ℚ ) ∧ ( ( 𝑥 < 𝑢 ∧ 𝑢 < 𝑧 ) ∧ ( 𝑧 < 𝑣 ∧ 𝑣 < 𝑦 ) ) ) → ( 𝑢 (,) 𝑣 ) ⊆ ( 𝑥 (,) 𝑦 ) ) |
55 |
|
eleq2 |
⊢ ( 𝑤 = ( 𝑢 (,) 𝑣 ) → ( 𝑧 ∈ 𝑤 ↔ 𝑧 ∈ ( 𝑢 (,) 𝑣 ) ) ) |
56 |
|
sseq1 |
⊢ ( 𝑤 = ( 𝑢 (,) 𝑣 ) → ( 𝑤 ⊆ ( 𝑥 (,) 𝑦 ) ↔ ( 𝑢 (,) 𝑣 ) ⊆ ( 𝑥 (,) 𝑦 ) ) ) |
57 |
55 56
|
anbi12d |
⊢ ( 𝑤 = ( 𝑢 (,) 𝑣 ) → ( ( 𝑧 ∈ 𝑤 ∧ 𝑤 ⊆ ( 𝑥 (,) 𝑦 ) ) ↔ ( 𝑧 ∈ ( 𝑢 (,) 𝑣 ) ∧ ( 𝑢 (,) 𝑣 ) ⊆ ( 𝑥 (,) 𝑦 ) ) ) ) |
58 |
57
|
rspcev |
⊢ ( ( ( 𝑢 (,) 𝑣 ) ∈ ( (,) “ ( ℚ × ℚ ) ) ∧ ( 𝑧 ∈ ( 𝑢 (,) 𝑣 ) ∧ ( 𝑢 (,) 𝑣 ) ⊆ ( 𝑥 (,) 𝑦 ) ) ) → ∃ 𝑤 ∈ ( (,) “ ( ℚ × ℚ ) ) ( 𝑧 ∈ 𝑤 ∧ 𝑤 ⊆ ( 𝑥 (,) 𝑦 ) ) ) |
59 |
33 43 54 58
|
syl12anc |
⊢ ( ( ( ( 𝑥 ∈ ℝ* ∧ 𝑦 ∈ ℝ* ) ∧ 𝑧 ∈ ( 𝑥 (,) 𝑦 ) ) ∧ ( 𝑢 ∈ ℚ ∧ 𝑣 ∈ ℚ ) ∧ ( ( 𝑥 < 𝑢 ∧ 𝑢 < 𝑧 ) ∧ ( 𝑧 < 𝑣 ∧ 𝑣 < 𝑦 ) ) ) → ∃ 𝑤 ∈ ( (,) “ ( ℚ × ℚ ) ) ( 𝑧 ∈ 𝑤 ∧ 𝑤 ⊆ ( 𝑥 (,) 𝑦 ) ) ) |
60 |
59
|
3exp |
⊢ ( ( ( 𝑥 ∈ ℝ* ∧ 𝑦 ∈ ℝ* ) ∧ 𝑧 ∈ ( 𝑥 (,) 𝑦 ) ) → ( ( 𝑢 ∈ ℚ ∧ 𝑣 ∈ ℚ ) → ( ( ( 𝑥 < 𝑢 ∧ 𝑢 < 𝑧 ) ∧ ( 𝑧 < 𝑣 ∧ 𝑣 < 𝑦 ) ) → ∃ 𝑤 ∈ ( (,) “ ( ℚ × ℚ ) ) ( 𝑧 ∈ 𝑤 ∧ 𝑤 ⊆ ( 𝑥 (,) 𝑦 ) ) ) ) ) |
61 |
60
|
rexlimdvv |
⊢ ( ( ( 𝑥 ∈ ℝ* ∧ 𝑦 ∈ ℝ* ) ∧ 𝑧 ∈ ( 𝑥 (,) 𝑦 ) ) → ( ∃ 𝑢 ∈ ℚ ∃ 𝑣 ∈ ℚ ( ( 𝑥 < 𝑢 ∧ 𝑢 < 𝑧 ) ∧ ( 𝑧 < 𝑣 ∧ 𝑣 < 𝑦 ) ) → ∃ 𝑤 ∈ ( (,) “ ( ℚ × ℚ ) ) ( 𝑧 ∈ 𝑤 ∧ 𝑤 ⊆ ( 𝑥 (,) 𝑦 ) ) ) ) |
62 |
17 61
|
syl5bir |
⊢ ( ( ( 𝑥 ∈ ℝ* ∧ 𝑦 ∈ ℝ* ) ∧ 𝑧 ∈ ( 𝑥 (,) 𝑦 ) ) → ( ( ∃ 𝑢 ∈ ℚ ( 𝑥 < 𝑢 ∧ 𝑢 < 𝑧 ) ∧ ∃ 𝑣 ∈ ℚ ( 𝑧 < 𝑣 ∧ 𝑣 < 𝑦 ) ) → ∃ 𝑤 ∈ ( (,) “ ( ℚ × ℚ ) ) ( 𝑧 ∈ 𝑤 ∧ 𝑤 ⊆ ( 𝑥 (,) 𝑦 ) ) ) ) |
63 |
12 16 62
|
mp2and |
⊢ ( ( ( 𝑥 ∈ ℝ* ∧ 𝑦 ∈ ℝ* ) ∧ 𝑧 ∈ ( 𝑥 (,) 𝑦 ) ) → ∃ 𝑤 ∈ ( (,) “ ( ℚ × ℚ ) ) ( 𝑧 ∈ 𝑤 ∧ 𝑤 ⊆ ( 𝑥 (,) 𝑦 ) ) ) |
64 |
63
|
ralrimiva |
⊢ ( ( 𝑥 ∈ ℝ* ∧ 𝑦 ∈ ℝ* ) → ∀ 𝑧 ∈ ( 𝑥 (,) 𝑦 ) ∃ 𝑤 ∈ ( (,) “ ( ℚ × ℚ ) ) ( 𝑧 ∈ 𝑤 ∧ 𝑤 ⊆ ( 𝑥 (,) 𝑦 ) ) ) |
65 |
|
qtopbas |
⊢ ( (,) “ ( ℚ × ℚ ) ) ∈ TopBases |
66 |
|
eltg2b |
⊢ ( ( (,) “ ( ℚ × ℚ ) ) ∈ TopBases → ( ( 𝑥 (,) 𝑦 ) ∈ ( topGen ‘ ( (,) “ ( ℚ × ℚ ) ) ) ↔ ∀ 𝑧 ∈ ( 𝑥 (,) 𝑦 ) ∃ 𝑤 ∈ ( (,) “ ( ℚ × ℚ ) ) ( 𝑧 ∈ 𝑤 ∧ 𝑤 ⊆ ( 𝑥 (,) 𝑦 ) ) ) ) |
67 |
65 66
|
ax-mp |
⊢ ( ( 𝑥 (,) 𝑦 ) ∈ ( topGen ‘ ( (,) “ ( ℚ × ℚ ) ) ) ↔ ∀ 𝑧 ∈ ( 𝑥 (,) 𝑦 ) ∃ 𝑤 ∈ ( (,) “ ( ℚ × ℚ ) ) ( 𝑧 ∈ 𝑤 ∧ 𝑤 ⊆ ( 𝑥 (,) 𝑦 ) ) ) |
68 |
64 67
|
sylibr |
⊢ ( ( 𝑥 ∈ ℝ* ∧ 𝑦 ∈ ℝ* ) → ( 𝑥 (,) 𝑦 ) ∈ ( topGen ‘ ( (,) “ ( ℚ × ℚ ) ) ) ) |
69 |
68
|
rgen2 |
⊢ ∀ 𝑥 ∈ ℝ* ∀ 𝑦 ∈ ℝ* ( 𝑥 (,) 𝑦 ) ∈ ( topGen ‘ ( (,) “ ( ℚ × ℚ ) ) ) |
70 |
|
ffnov |
⊢ ( (,) : ( ℝ* × ℝ* ) ⟶ ( topGen ‘ ( (,) “ ( ℚ × ℚ ) ) ) ↔ ( (,) Fn ( ℝ* × ℝ* ) ∧ ∀ 𝑥 ∈ ℝ* ∀ 𝑦 ∈ ℝ* ( 𝑥 (,) 𝑦 ) ∈ ( topGen ‘ ( (,) “ ( ℚ × ℚ ) ) ) ) ) |
71 |
5 69 70
|
mpbir2an |
⊢ (,) : ( ℝ* × ℝ* ) ⟶ ( topGen ‘ ( (,) “ ( ℚ × ℚ ) ) ) |
72 |
|
frn |
⊢ ( (,) : ( ℝ* × ℝ* ) ⟶ ( topGen ‘ ( (,) “ ( ℚ × ℚ ) ) ) → ran (,) ⊆ ( topGen ‘ ( (,) “ ( ℚ × ℚ ) ) ) ) |
73 |
71 72
|
ax-mp |
⊢ ran (,) ⊆ ( topGen ‘ ( (,) “ ( ℚ × ℚ ) ) ) |
74 |
|
2basgen |
⊢ ( ( ( (,) “ ( ℚ × ℚ ) ) ⊆ ran (,) ∧ ran (,) ⊆ ( topGen ‘ ( (,) “ ( ℚ × ℚ ) ) ) ) → ( topGen ‘ ( (,) “ ( ℚ × ℚ ) ) ) = ( topGen ‘ ran (,) ) ) |
75 |
2 73 74
|
mp2an |
⊢ ( topGen ‘ ( (,) “ ( ℚ × ℚ ) ) ) = ( topGen ‘ ran (,) ) |
76 |
1 75
|
eqtr2i |
⊢ ( topGen ‘ ran (,) ) = 𝑄 |