Metamath Proof Explorer


Theorem tgqioo2

Description: Every open set of reals is the (countable) union of open interval with rational bounds. (Contributed by Glauco Siliprandi, 26-Jun-2021)

Ref Expression
Hypotheses tgqioo2.1 𝐽 = ( topGen ‘ ran (,) )
tgqioo2.2 ( 𝜑𝐴𝐽 )
Assertion tgqioo2 ( 𝜑 → ∃ 𝑞 ( 𝑞 ⊆ ( (,) “ ( ℚ × ℚ ) ) ∧ 𝐴 = 𝑞 ) )

Proof

Step Hyp Ref Expression
1 tgqioo2.1 𝐽 = ( topGen ‘ ran (,) )
2 tgqioo2.2 ( 𝜑𝐴𝐽 )
3 eqid ( topGen ‘ ( (,) “ ( ℚ × ℚ ) ) ) = ( topGen ‘ ( (,) “ ( ℚ × ℚ ) ) )
4 3 tgqioo ( topGen ‘ ran (,) ) = ( topGen ‘ ( (,) “ ( ℚ × ℚ ) ) )
5 1 4 3 3eqtri 𝐽 = ( topGen ‘ ( (,) “ ( ℚ × ℚ ) ) )
6 5 a1i ( 𝜑𝐽 = ( topGen ‘ ( (,) “ ( ℚ × ℚ ) ) ) )
7 2 6 eleqtrd ( 𝜑𝐴 ∈ ( topGen ‘ ( (,) “ ( ℚ × ℚ ) ) ) )
8 iooex (,) ∈ V
9 imaexg ( (,) ∈ V → ( (,) “ ( ℚ × ℚ ) ) ∈ V )
10 8 9 ax-mp ( (,) “ ( ℚ × ℚ ) ) ∈ V
11 eltg3 ( ( (,) “ ( ℚ × ℚ ) ) ∈ V → ( 𝐴 ∈ ( topGen ‘ ( (,) “ ( ℚ × ℚ ) ) ) ↔ ∃ 𝑞 ( 𝑞 ⊆ ( (,) “ ( ℚ × ℚ ) ) ∧ 𝐴 = 𝑞 ) ) )
12 10 11 ax-mp ( 𝐴 ∈ ( topGen ‘ ( (,) “ ( ℚ × ℚ ) ) ) ↔ ∃ 𝑞 ( 𝑞 ⊆ ( (,) “ ( ℚ × ℚ ) ) ∧ 𝐴 = 𝑞 ) )
13 7 12 sylib ( 𝜑 → ∃ 𝑞 ( 𝑞 ⊆ ( (,) “ ( ℚ × ℚ ) ) ∧ 𝐴 = 𝑞 ) )