Step |
Hyp |
Ref |
Expression |
1 |
|
tgqioo2.1 |
⊢ 𝐽 = ( topGen ‘ ran (,) ) |
2 |
|
tgqioo2.2 |
⊢ ( 𝜑 → 𝐴 ∈ 𝐽 ) |
3 |
|
eqid |
⊢ ( topGen ‘ ( (,) “ ( ℚ × ℚ ) ) ) = ( topGen ‘ ( (,) “ ( ℚ × ℚ ) ) ) |
4 |
3
|
tgqioo |
⊢ ( topGen ‘ ran (,) ) = ( topGen ‘ ( (,) “ ( ℚ × ℚ ) ) ) |
5 |
1 4 3
|
3eqtri |
⊢ 𝐽 = ( topGen ‘ ( (,) “ ( ℚ × ℚ ) ) ) |
6 |
5
|
a1i |
⊢ ( 𝜑 → 𝐽 = ( topGen ‘ ( (,) “ ( ℚ × ℚ ) ) ) ) |
7 |
2 6
|
eleqtrd |
⊢ ( 𝜑 → 𝐴 ∈ ( topGen ‘ ( (,) “ ( ℚ × ℚ ) ) ) ) |
8 |
|
iooex |
⊢ (,) ∈ V |
9 |
|
imaexg |
⊢ ( (,) ∈ V → ( (,) “ ( ℚ × ℚ ) ) ∈ V ) |
10 |
8 9
|
ax-mp |
⊢ ( (,) “ ( ℚ × ℚ ) ) ∈ V |
11 |
|
eltg3 |
⊢ ( ( (,) “ ( ℚ × ℚ ) ) ∈ V → ( 𝐴 ∈ ( topGen ‘ ( (,) “ ( ℚ × ℚ ) ) ) ↔ ∃ 𝑞 ( 𝑞 ⊆ ( (,) “ ( ℚ × ℚ ) ) ∧ 𝐴 = ∪ 𝑞 ) ) ) |
12 |
10 11
|
ax-mp |
⊢ ( 𝐴 ∈ ( topGen ‘ ( (,) “ ( ℚ × ℚ ) ) ) ↔ ∃ 𝑞 ( 𝑞 ⊆ ( (,) “ ( ℚ × ℚ ) ) ∧ 𝐴 = ∪ 𝑞 ) ) |
13 |
7 12
|
sylib |
⊢ ( 𝜑 → ∃ 𝑞 ( 𝑞 ⊆ ( (,) “ ( ℚ × ℚ ) ) ∧ 𝐴 = ∪ 𝑞 ) ) |