| Step | Hyp | Ref | Expression | 
						
							| 1 |  | qtopcmp.1 | ⊢ 𝑋  =  ∪  𝐽 | 
						
							| 2 |  | f1ocnv | ⊢ ( 𝐹 : 𝑋 –1-1-onto→ 𝑌  →  ◡ 𝐹 : 𝑌 –1-1-onto→ 𝑋 ) | 
						
							| 3 |  | f1ofun | ⊢ ( ◡ 𝐹 : 𝑌 –1-1-onto→ 𝑋  →  Fun  ◡ 𝐹 ) | 
						
							| 4 | 2 3 | syl | ⊢ ( 𝐹 : 𝑋 –1-1-onto→ 𝑌  →  Fun  ◡ 𝐹 ) | 
						
							| 5 | 4 | ad2antlr | ⊢ ( ( ( 𝐽  ∈  TopBases  ∧  𝐹 : 𝑋 –1-1-onto→ 𝑌 )  ∧  𝑥  ⊆  𝑌 )  →  Fun  ◡ 𝐹 ) | 
						
							| 6 |  | simpr | ⊢ ( ( ( 𝐽  ∈  TopBases  ∧  𝐹 : 𝑋 –1-1-onto→ 𝑌 )  ∧  𝑥  ⊆  𝑌 )  →  𝑥  ⊆  𝑌 ) | 
						
							| 7 |  | df-rn | ⊢ ran  𝐹  =  dom  ◡ 𝐹 | 
						
							| 8 |  | f1ofo | ⊢ ( 𝐹 : 𝑋 –1-1-onto→ 𝑌  →  𝐹 : 𝑋 –onto→ 𝑌 ) | 
						
							| 9 | 8 | ad2antlr | ⊢ ( ( ( 𝐽  ∈  TopBases  ∧  𝐹 : 𝑋 –1-1-onto→ 𝑌 )  ∧  𝑥  ⊆  𝑌 )  →  𝐹 : 𝑋 –onto→ 𝑌 ) | 
						
							| 10 |  | forn | ⊢ ( 𝐹 : 𝑋 –onto→ 𝑌  →  ran  𝐹  =  𝑌 ) | 
						
							| 11 | 9 10 | syl | ⊢ ( ( ( 𝐽  ∈  TopBases  ∧  𝐹 : 𝑋 –1-1-onto→ 𝑌 )  ∧  𝑥  ⊆  𝑌 )  →  ran  𝐹  =  𝑌 ) | 
						
							| 12 | 7 11 | eqtr3id | ⊢ ( ( ( 𝐽  ∈  TopBases  ∧  𝐹 : 𝑋 –1-1-onto→ 𝑌 )  ∧  𝑥  ⊆  𝑌 )  →  dom  ◡ 𝐹  =  𝑌 ) | 
						
							| 13 | 6 12 | sseqtrrd | ⊢ ( ( ( 𝐽  ∈  TopBases  ∧  𝐹 : 𝑋 –1-1-onto→ 𝑌 )  ∧  𝑥  ⊆  𝑌 )  →  𝑥  ⊆  dom  ◡ 𝐹 ) | 
						
							| 14 |  | funimass4 | ⊢ ( ( Fun  ◡ 𝐹  ∧  𝑥  ⊆  dom  ◡ 𝐹 )  →  ( ( ◡ 𝐹  “  𝑥 )  ⊆  ∪  ( 𝐽  ∩  𝒫  ( ◡ 𝐹  “  𝑥 ) )  ↔  ∀ 𝑦  ∈  𝑥 ( ◡ 𝐹 ‘ 𝑦 )  ∈  ∪  ( 𝐽  ∩  𝒫  ( ◡ 𝐹  “  𝑥 ) ) ) ) | 
						
							| 15 | 5 13 14 | syl2anc | ⊢ ( ( ( 𝐽  ∈  TopBases  ∧  𝐹 : 𝑋 –1-1-onto→ 𝑌 )  ∧  𝑥  ⊆  𝑌 )  →  ( ( ◡ 𝐹  “  𝑥 )  ⊆  ∪  ( 𝐽  ∩  𝒫  ( ◡ 𝐹  “  𝑥 ) )  ↔  ∀ 𝑦  ∈  𝑥 ( ◡ 𝐹 ‘ 𝑦 )  ∈  ∪  ( 𝐽  ∩  𝒫  ( ◡ 𝐹  “  𝑥 ) ) ) ) | 
						
							| 16 |  | dfss3 | ⊢ ( 𝑥  ⊆  ∪  ( ( 𝐽  qTop  𝐹 )  ∩  𝒫  𝑥 )  ↔  ∀ 𝑦  ∈  𝑥 𝑦  ∈  ∪  ( ( 𝐽  qTop  𝐹 )  ∩  𝒫  𝑥 ) ) | 
						
							| 17 |  | simprl | ⊢ ( ( ( ( ( 𝐽  ∈  TopBases  ∧  𝐹 : 𝑋 –1-1-onto→ 𝑌 )  ∧  𝑥  ⊆  𝑌 )  ∧  𝑦  ∈  𝑥 )  ∧  ( 𝑧  ∈  ( ( 𝐽  qTop  𝐹 )  ∩  𝒫  𝑥 )  ∧  𝑦  ∈  𝑧 ) )  →  𝑧  ∈  ( ( 𝐽  qTop  𝐹 )  ∩  𝒫  𝑥 ) ) | 
						
							| 18 | 17 | elin1d | ⊢ ( ( ( ( ( 𝐽  ∈  TopBases  ∧  𝐹 : 𝑋 –1-1-onto→ 𝑌 )  ∧  𝑥  ⊆  𝑌 )  ∧  𝑦  ∈  𝑥 )  ∧  ( 𝑧  ∈  ( ( 𝐽  qTop  𝐹 )  ∩  𝒫  𝑥 )  ∧  𝑦  ∈  𝑧 ) )  →  𝑧  ∈  ( 𝐽  qTop  𝐹 ) ) | 
						
							| 19 | 1 | elqtop2 | ⊢ ( ( 𝐽  ∈  TopBases  ∧  𝐹 : 𝑋 –onto→ 𝑌 )  →  ( 𝑧  ∈  ( 𝐽  qTop  𝐹 )  ↔  ( 𝑧  ⊆  𝑌  ∧  ( ◡ 𝐹  “  𝑧 )  ∈  𝐽 ) ) ) | 
						
							| 20 | 8 19 | sylan2 | ⊢ ( ( 𝐽  ∈  TopBases  ∧  𝐹 : 𝑋 –1-1-onto→ 𝑌 )  →  ( 𝑧  ∈  ( 𝐽  qTop  𝐹 )  ↔  ( 𝑧  ⊆  𝑌  ∧  ( ◡ 𝐹  “  𝑧 )  ∈  𝐽 ) ) ) | 
						
							| 21 | 20 | ad3antrrr | ⊢ ( ( ( ( ( 𝐽  ∈  TopBases  ∧  𝐹 : 𝑋 –1-1-onto→ 𝑌 )  ∧  𝑥  ⊆  𝑌 )  ∧  𝑦  ∈  𝑥 )  ∧  ( 𝑧  ∈  ( ( 𝐽  qTop  𝐹 )  ∩  𝒫  𝑥 )  ∧  𝑦  ∈  𝑧 ) )  →  ( 𝑧  ∈  ( 𝐽  qTop  𝐹 )  ↔  ( 𝑧  ⊆  𝑌  ∧  ( ◡ 𝐹  “  𝑧 )  ∈  𝐽 ) ) ) | 
						
							| 22 | 18 21 | mpbid | ⊢ ( ( ( ( ( 𝐽  ∈  TopBases  ∧  𝐹 : 𝑋 –1-1-onto→ 𝑌 )  ∧  𝑥  ⊆  𝑌 )  ∧  𝑦  ∈  𝑥 )  ∧  ( 𝑧  ∈  ( ( 𝐽  qTop  𝐹 )  ∩  𝒫  𝑥 )  ∧  𝑦  ∈  𝑧 ) )  →  ( 𝑧  ⊆  𝑌  ∧  ( ◡ 𝐹  “  𝑧 )  ∈  𝐽 ) ) | 
						
							| 23 | 22 | simprd | ⊢ ( ( ( ( ( 𝐽  ∈  TopBases  ∧  𝐹 : 𝑋 –1-1-onto→ 𝑌 )  ∧  𝑥  ⊆  𝑌 )  ∧  𝑦  ∈  𝑥 )  ∧  ( 𝑧  ∈  ( ( 𝐽  qTop  𝐹 )  ∩  𝒫  𝑥 )  ∧  𝑦  ∈  𝑧 ) )  →  ( ◡ 𝐹  “  𝑧 )  ∈  𝐽 ) | 
						
							| 24 | 17 | elin2d | ⊢ ( ( ( ( ( 𝐽  ∈  TopBases  ∧  𝐹 : 𝑋 –1-1-onto→ 𝑌 )  ∧  𝑥  ⊆  𝑌 )  ∧  𝑦  ∈  𝑥 )  ∧  ( 𝑧  ∈  ( ( 𝐽  qTop  𝐹 )  ∩  𝒫  𝑥 )  ∧  𝑦  ∈  𝑧 ) )  →  𝑧  ∈  𝒫  𝑥 ) | 
						
							| 25 | 24 | elpwid | ⊢ ( ( ( ( ( 𝐽  ∈  TopBases  ∧  𝐹 : 𝑋 –1-1-onto→ 𝑌 )  ∧  𝑥  ⊆  𝑌 )  ∧  𝑦  ∈  𝑥 )  ∧  ( 𝑧  ∈  ( ( 𝐽  qTop  𝐹 )  ∩  𝒫  𝑥 )  ∧  𝑦  ∈  𝑧 ) )  →  𝑧  ⊆  𝑥 ) | 
						
							| 26 |  | imass2 | ⊢ ( 𝑧  ⊆  𝑥  →  ( ◡ 𝐹  “  𝑧 )  ⊆  ( ◡ 𝐹  “  𝑥 ) ) | 
						
							| 27 | 25 26 | syl | ⊢ ( ( ( ( ( 𝐽  ∈  TopBases  ∧  𝐹 : 𝑋 –1-1-onto→ 𝑌 )  ∧  𝑥  ⊆  𝑌 )  ∧  𝑦  ∈  𝑥 )  ∧  ( 𝑧  ∈  ( ( 𝐽  qTop  𝐹 )  ∩  𝒫  𝑥 )  ∧  𝑦  ∈  𝑧 ) )  →  ( ◡ 𝐹  “  𝑧 )  ⊆  ( ◡ 𝐹  “  𝑥 ) ) | 
						
							| 28 | 23 27 | elpwd | ⊢ ( ( ( ( ( 𝐽  ∈  TopBases  ∧  𝐹 : 𝑋 –1-1-onto→ 𝑌 )  ∧  𝑥  ⊆  𝑌 )  ∧  𝑦  ∈  𝑥 )  ∧  ( 𝑧  ∈  ( ( 𝐽  qTop  𝐹 )  ∩  𝒫  𝑥 )  ∧  𝑦  ∈  𝑧 ) )  →  ( ◡ 𝐹  “  𝑧 )  ∈  𝒫  ( ◡ 𝐹  “  𝑥 ) ) | 
						
							| 29 | 23 28 | elind | ⊢ ( ( ( ( ( 𝐽  ∈  TopBases  ∧  𝐹 : 𝑋 –1-1-onto→ 𝑌 )  ∧  𝑥  ⊆  𝑌 )  ∧  𝑦  ∈  𝑥 )  ∧  ( 𝑧  ∈  ( ( 𝐽  qTop  𝐹 )  ∩  𝒫  𝑥 )  ∧  𝑦  ∈  𝑧 ) )  →  ( ◡ 𝐹  “  𝑧 )  ∈  ( 𝐽  ∩  𝒫  ( ◡ 𝐹  “  𝑥 ) ) ) | 
						
							| 30 |  | simp-4r | ⊢ ( ( ( ( ( 𝐽  ∈  TopBases  ∧  𝐹 : 𝑋 –1-1-onto→ 𝑌 )  ∧  𝑥  ⊆  𝑌 )  ∧  𝑦  ∈  𝑥 )  ∧  ( 𝑧  ∈  ( ( 𝐽  qTop  𝐹 )  ∩  𝒫  𝑥 )  ∧  𝑦  ∈  𝑧 ) )  →  𝐹 : 𝑋 –1-1-onto→ 𝑌 ) | 
						
							| 31 | 30 2 | syl | ⊢ ( ( ( ( ( 𝐽  ∈  TopBases  ∧  𝐹 : 𝑋 –1-1-onto→ 𝑌 )  ∧  𝑥  ⊆  𝑌 )  ∧  𝑦  ∈  𝑥 )  ∧  ( 𝑧  ∈  ( ( 𝐽  qTop  𝐹 )  ∩  𝒫  𝑥 )  ∧  𝑦  ∈  𝑧 ) )  →  ◡ 𝐹 : 𝑌 –1-1-onto→ 𝑋 ) | 
						
							| 32 |  | f1ofn | ⊢ ( ◡ 𝐹 : 𝑌 –1-1-onto→ 𝑋  →  ◡ 𝐹  Fn  𝑌 ) | 
						
							| 33 | 31 32 | syl | ⊢ ( ( ( ( ( 𝐽  ∈  TopBases  ∧  𝐹 : 𝑋 –1-1-onto→ 𝑌 )  ∧  𝑥  ⊆  𝑌 )  ∧  𝑦  ∈  𝑥 )  ∧  ( 𝑧  ∈  ( ( 𝐽  qTop  𝐹 )  ∩  𝒫  𝑥 )  ∧  𝑦  ∈  𝑧 ) )  →  ◡ 𝐹  Fn  𝑌 ) | 
						
							| 34 | 6 | ad2antrr | ⊢ ( ( ( ( ( 𝐽  ∈  TopBases  ∧  𝐹 : 𝑋 –1-1-onto→ 𝑌 )  ∧  𝑥  ⊆  𝑌 )  ∧  𝑦  ∈  𝑥 )  ∧  ( 𝑧  ∈  ( ( 𝐽  qTop  𝐹 )  ∩  𝒫  𝑥 )  ∧  𝑦  ∈  𝑧 ) )  →  𝑥  ⊆  𝑌 ) | 
						
							| 35 | 25 34 | sstrd | ⊢ ( ( ( ( ( 𝐽  ∈  TopBases  ∧  𝐹 : 𝑋 –1-1-onto→ 𝑌 )  ∧  𝑥  ⊆  𝑌 )  ∧  𝑦  ∈  𝑥 )  ∧  ( 𝑧  ∈  ( ( 𝐽  qTop  𝐹 )  ∩  𝒫  𝑥 )  ∧  𝑦  ∈  𝑧 ) )  →  𝑧  ⊆  𝑌 ) | 
						
							| 36 |  | simprr | ⊢ ( ( ( ( ( 𝐽  ∈  TopBases  ∧  𝐹 : 𝑋 –1-1-onto→ 𝑌 )  ∧  𝑥  ⊆  𝑌 )  ∧  𝑦  ∈  𝑥 )  ∧  ( 𝑧  ∈  ( ( 𝐽  qTop  𝐹 )  ∩  𝒫  𝑥 )  ∧  𝑦  ∈  𝑧 ) )  →  𝑦  ∈  𝑧 ) | 
						
							| 37 |  | fnfvima | ⊢ ( ( ◡ 𝐹  Fn  𝑌  ∧  𝑧  ⊆  𝑌  ∧  𝑦  ∈  𝑧 )  →  ( ◡ 𝐹 ‘ 𝑦 )  ∈  ( ◡ 𝐹  “  𝑧 ) ) | 
						
							| 38 | 33 35 36 37 | syl3anc | ⊢ ( ( ( ( ( 𝐽  ∈  TopBases  ∧  𝐹 : 𝑋 –1-1-onto→ 𝑌 )  ∧  𝑥  ⊆  𝑌 )  ∧  𝑦  ∈  𝑥 )  ∧  ( 𝑧  ∈  ( ( 𝐽  qTop  𝐹 )  ∩  𝒫  𝑥 )  ∧  𝑦  ∈  𝑧 ) )  →  ( ◡ 𝐹 ‘ 𝑦 )  ∈  ( ◡ 𝐹  “  𝑧 ) ) | 
						
							| 39 |  | eleq2 | ⊢ ( 𝑤  =  ( ◡ 𝐹  “  𝑧 )  →  ( ( ◡ 𝐹 ‘ 𝑦 )  ∈  𝑤  ↔  ( ◡ 𝐹 ‘ 𝑦 )  ∈  ( ◡ 𝐹  “  𝑧 ) ) ) | 
						
							| 40 | 39 | rspcev | ⊢ ( ( ( ◡ 𝐹  “  𝑧 )  ∈  ( 𝐽  ∩  𝒫  ( ◡ 𝐹  “  𝑥 ) )  ∧  ( ◡ 𝐹 ‘ 𝑦 )  ∈  ( ◡ 𝐹  “  𝑧 ) )  →  ∃ 𝑤  ∈  ( 𝐽  ∩  𝒫  ( ◡ 𝐹  “  𝑥 ) ) ( ◡ 𝐹 ‘ 𝑦 )  ∈  𝑤 ) | 
						
							| 41 | 29 38 40 | syl2anc | ⊢ ( ( ( ( ( 𝐽  ∈  TopBases  ∧  𝐹 : 𝑋 –1-1-onto→ 𝑌 )  ∧  𝑥  ⊆  𝑌 )  ∧  𝑦  ∈  𝑥 )  ∧  ( 𝑧  ∈  ( ( 𝐽  qTop  𝐹 )  ∩  𝒫  𝑥 )  ∧  𝑦  ∈  𝑧 ) )  →  ∃ 𝑤  ∈  ( 𝐽  ∩  𝒫  ( ◡ 𝐹  “  𝑥 ) ) ( ◡ 𝐹 ‘ 𝑦 )  ∈  𝑤 ) | 
						
							| 42 | 41 | rexlimdvaa | ⊢ ( ( ( ( 𝐽  ∈  TopBases  ∧  𝐹 : 𝑋 –1-1-onto→ 𝑌 )  ∧  𝑥  ⊆  𝑌 )  ∧  𝑦  ∈  𝑥 )  →  ( ∃ 𝑧  ∈  ( ( 𝐽  qTop  𝐹 )  ∩  𝒫  𝑥 ) 𝑦  ∈  𝑧  →  ∃ 𝑤  ∈  ( 𝐽  ∩  𝒫  ( ◡ 𝐹  “  𝑥 ) ) ( ◡ 𝐹 ‘ 𝑦 )  ∈  𝑤 ) ) | 
						
							| 43 |  | simp-4r | ⊢ ( ( ( ( ( 𝐽  ∈  TopBases  ∧  𝐹 : 𝑋 –1-1-onto→ 𝑌 )  ∧  𝑥  ⊆  𝑌 )  ∧  𝑦  ∈  𝑥 )  ∧  ( 𝑤  ∈  ( 𝐽  ∩  𝒫  ( ◡ 𝐹  “  𝑥 ) )  ∧  ( ◡ 𝐹 ‘ 𝑦 )  ∈  𝑤 ) )  →  𝐹 : 𝑋 –1-1-onto→ 𝑌 ) | 
						
							| 44 |  | f1ofun | ⊢ ( 𝐹 : 𝑋 –1-1-onto→ 𝑌  →  Fun  𝐹 ) | 
						
							| 45 | 43 44 | syl | ⊢ ( ( ( ( ( 𝐽  ∈  TopBases  ∧  𝐹 : 𝑋 –1-1-onto→ 𝑌 )  ∧  𝑥  ⊆  𝑌 )  ∧  𝑦  ∈  𝑥 )  ∧  ( 𝑤  ∈  ( 𝐽  ∩  𝒫  ( ◡ 𝐹  “  𝑥 ) )  ∧  ( ◡ 𝐹 ‘ 𝑦 )  ∈  𝑤 ) )  →  Fun  𝐹 ) | 
						
							| 46 |  | simprl | ⊢ ( ( ( ( ( 𝐽  ∈  TopBases  ∧  𝐹 : 𝑋 –1-1-onto→ 𝑌 )  ∧  𝑥  ⊆  𝑌 )  ∧  𝑦  ∈  𝑥 )  ∧  ( 𝑤  ∈  ( 𝐽  ∩  𝒫  ( ◡ 𝐹  “  𝑥 ) )  ∧  ( ◡ 𝐹 ‘ 𝑦 )  ∈  𝑤 ) )  →  𝑤  ∈  ( 𝐽  ∩  𝒫  ( ◡ 𝐹  “  𝑥 ) ) ) | 
						
							| 47 | 46 | elin2d | ⊢ ( ( ( ( ( 𝐽  ∈  TopBases  ∧  𝐹 : 𝑋 –1-1-onto→ 𝑌 )  ∧  𝑥  ⊆  𝑌 )  ∧  𝑦  ∈  𝑥 )  ∧  ( 𝑤  ∈  ( 𝐽  ∩  𝒫  ( ◡ 𝐹  “  𝑥 ) )  ∧  ( ◡ 𝐹 ‘ 𝑦 )  ∈  𝑤 ) )  →  𝑤  ∈  𝒫  ( ◡ 𝐹  “  𝑥 ) ) | 
						
							| 48 | 47 | elpwid | ⊢ ( ( ( ( ( 𝐽  ∈  TopBases  ∧  𝐹 : 𝑋 –1-1-onto→ 𝑌 )  ∧  𝑥  ⊆  𝑌 )  ∧  𝑦  ∈  𝑥 )  ∧  ( 𝑤  ∈  ( 𝐽  ∩  𝒫  ( ◡ 𝐹  “  𝑥 ) )  ∧  ( ◡ 𝐹 ‘ 𝑦 )  ∈  𝑤 ) )  →  𝑤  ⊆  ( ◡ 𝐹  “  𝑥 ) ) | 
						
							| 49 |  | funimass2 | ⊢ ( ( Fun  𝐹  ∧  𝑤  ⊆  ( ◡ 𝐹  “  𝑥 ) )  →  ( 𝐹  “  𝑤 )  ⊆  𝑥 ) | 
						
							| 50 | 45 48 49 | syl2anc | ⊢ ( ( ( ( ( 𝐽  ∈  TopBases  ∧  𝐹 : 𝑋 –1-1-onto→ 𝑌 )  ∧  𝑥  ⊆  𝑌 )  ∧  𝑦  ∈  𝑥 )  ∧  ( 𝑤  ∈  ( 𝐽  ∩  𝒫  ( ◡ 𝐹  “  𝑥 ) )  ∧  ( ◡ 𝐹 ‘ 𝑦 )  ∈  𝑤 ) )  →  ( 𝐹  “  𝑤 )  ⊆  𝑥 ) | 
						
							| 51 | 6 | ad2antrr | ⊢ ( ( ( ( ( 𝐽  ∈  TopBases  ∧  𝐹 : 𝑋 –1-1-onto→ 𝑌 )  ∧  𝑥  ⊆  𝑌 )  ∧  𝑦  ∈  𝑥 )  ∧  ( 𝑤  ∈  ( 𝐽  ∩  𝒫  ( ◡ 𝐹  “  𝑥 ) )  ∧  ( ◡ 𝐹 ‘ 𝑦 )  ∈  𝑤 ) )  →  𝑥  ⊆  𝑌 ) | 
						
							| 52 | 50 51 | sstrd | ⊢ ( ( ( ( ( 𝐽  ∈  TopBases  ∧  𝐹 : 𝑋 –1-1-onto→ 𝑌 )  ∧  𝑥  ⊆  𝑌 )  ∧  𝑦  ∈  𝑥 )  ∧  ( 𝑤  ∈  ( 𝐽  ∩  𝒫  ( ◡ 𝐹  “  𝑥 ) )  ∧  ( ◡ 𝐹 ‘ 𝑦 )  ∈  𝑤 ) )  →  ( 𝐹  “  𝑤 )  ⊆  𝑌 ) | 
						
							| 53 |  | f1of1 | ⊢ ( 𝐹 : 𝑋 –1-1-onto→ 𝑌  →  𝐹 : 𝑋 –1-1→ 𝑌 ) | 
						
							| 54 | 43 53 | syl | ⊢ ( ( ( ( ( 𝐽  ∈  TopBases  ∧  𝐹 : 𝑋 –1-1-onto→ 𝑌 )  ∧  𝑥  ⊆  𝑌 )  ∧  𝑦  ∈  𝑥 )  ∧  ( 𝑤  ∈  ( 𝐽  ∩  𝒫  ( ◡ 𝐹  “  𝑥 ) )  ∧  ( ◡ 𝐹 ‘ 𝑦 )  ∈  𝑤 ) )  →  𝐹 : 𝑋 –1-1→ 𝑌 ) | 
						
							| 55 | 46 | elin1d | ⊢ ( ( ( ( ( 𝐽  ∈  TopBases  ∧  𝐹 : 𝑋 –1-1-onto→ 𝑌 )  ∧  𝑥  ⊆  𝑌 )  ∧  𝑦  ∈  𝑥 )  ∧  ( 𝑤  ∈  ( 𝐽  ∩  𝒫  ( ◡ 𝐹  “  𝑥 ) )  ∧  ( ◡ 𝐹 ‘ 𝑦 )  ∈  𝑤 ) )  →  𝑤  ∈  𝐽 ) | 
						
							| 56 |  | elssuni | ⊢ ( 𝑤  ∈  𝐽  →  𝑤  ⊆  ∪  𝐽 ) | 
						
							| 57 | 56 1 | sseqtrrdi | ⊢ ( 𝑤  ∈  𝐽  →  𝑤  ⊆  𝑋 ) | 
						
							| 58 | 55 57 | syl | ⊢ ( ( ( ( ( 𝐽  ∈  TopBases  ∧  𝐹 : 𝑋 –1-1-onto→ 𝑌 )  ∧  𝑥  ⊆  𝑌 )  ∧  𝑦  ∈  𝑥 )  ∧  ( 𝑤  ∈  ( 𝐽  ∩  𝒫  ( ◡ 𝐹  “  𝑥 ) )  ∧  ( ◡ 𝐹 ‘ 𝑦 )  ∈  𝑤 ) )  →  𝑤  ⊆  𝑋 ) | 
						
							| 59 |  | f1imacnv | ⊢ ( ( 𝐹 : 𝑋 –1-1→ 𝑌  ∧  𝑤  ⊆  𝑋 )  →  ( ◡ 𝐹  “  ( 𝐹  “  𝑤 ) )  =  𝑤 ) | 
						
							| 60 | 54 58 59 | syl2anc | ⊢ ( ( ( ( ( 𝐽  ∈  TopBases  ∧  𝐹 : 𝑋 –1-1-onto→ 𝑌 )  ∧  𝑥  ⊆  𝑌 )  ∧  𝑦  ∈  𝑥 )  ∧  ( 𝑤  ∈  ( 𝐽  ∩  𝒫  ( ◡ 𝐹  “  𝑥 ) )  ∧  ( ◡ 𝐹 ‘ 𝑦 )  ∈  𝑤 ) )  →  ( ◡ 𝐹  “  ( 𝐹  “  𝑤 ) )  =  𝑤 ) | 
						
							| 61 | 60 55 | eqeltrd | ⊢ ( ( ( ( ( 𝐽  ∈  TopBases  ∧  𝐹 : 𝑋 –1-1-onto→ 𝑌 )  ∧  𝑥  ⊆  𝑌 )  ∧  𝑦  ∈  𝑥 )  ∧  ( 𝑤  ∈  ( 𝐽  ∩  𝒫  ( ◡ 𝐹  “  𝑥 ) )  ∧  ( ◡ 𝐹 ‘ 𝑦 )  ∈  𝑤 ) )  →  ( ◡ 𝐹  “  ( 𝐹  “  𝑤 ) )  ∈  𝐽 ) | 
						
							| 62 | 1 | elqtop2 | ⊢ ( ( 𝐽  ∈  TopBases  ∧  𝐹 : 𝑋 –onto→ 𝑌 )  →  ( ( 𝐹  “  𝑤 )  ∈  ( 𝐽  qTop  𝐹 )  ↔  ( ( 𝐹  “  𝑤 )  ⊆  𝑌  ∧  ( ◡ 𝐹  “  ( 𝐹  “  𝑤 ) )  ∈  𝐽 ) ) ) | 
						
							| 63 | 8 62 | sylan2 | ⊢ ( ( 𝐽  ∈  TopBases  ∧  𝐹 : 𝑋 –1-1-onto→ 𝑌 )  →  ( ( 𝐹  “  𝑤 )  ∈  ( 𝐽  qTop  𝐹 )  ↔  ( ( 𝐹  “  𝑤 )  ⊆  𝑌  ∧  ( ◡ 𝐹  “  ( 𝐹  “  𝑤 ) )  ∈  𝐽 ) ) ) | 
						
							| 64 | 63 | ad3antrrr | ⊢ ( ( ( ( ( 𝐽  ∈  TopBases  ∧  𝐹 : 𝑋 –1-1-onto→ 𝑌 )  ∧  𝑥  ⊆  𝑌 )  ∧  𝑦  ∈  𝑥 )  ∧  ( 𝑤  ∈  ( 𝐽  ∩  𝒫  ( ◡ 𝐹  “  𝑥 ) )  ∧  ( ◡ 𝐹 ‘ 𝑦 )  ∈  𝑤 ) )  →  ( ( 𝐹  “  𝑤 )  ∈  ( 𝐽  qTop  𝐹 )  ↔  ( ( 𝐹  “  𝑤 )  ⊆  𝑌  ∧  ( ◡ 𝐹  “  ( 𝐹  “  𝑤 ) )  ∈  𝐽 ) ) ) | 
						
							| 65 | 52 61 64 | mpbir2and | ⊢ ( ( ( ( ( 𝐽  ∈  TopBases  ∧  𝐹 : 𝑋 –1-1-onto→ 𝑌 )  ∧  𝑥  ⊆  𝑌 )  ∧  𝑦  ∈  𝑥 )  ∧  ( 𝑤  ∈  ( 𝐽  ∩  𝒫  ( ◡ 𝐹  “  𝑥 ) )  ∧  ( ◡ 𝐹 ‘ 𝑦 )  ∈  𝑤 ) )  →  ( 𝐹  “  𝑤 )  ∈  ( 𝐽  qTop  𝐹 ) ) | 
						
							| 66 |  | vex | ⊢ 𝑥  ∈  V | 
						
							| 67 | 66 | elpw2 | ⊢ ( ( 𝐹  “  𝑤 )  ∈  𝒫  𝑥  ↔  ( 𝐹  “  𝑤 )  ⊆  𝑥 ) | 
						
							| 68 | 50 67 | sylibr | ⊢ ( ( ( ( ( 𝐽  ∈  TopBases  ∧  𝐹 : 𝑋 –1-1-onto→ 𝑌 )  ∧  𝑥  ⊆  𝑌 )  ∧  𝑦  ∈  𝑥 )  ∧  ( 𝑤  ∈  ( 𝐽  ∩  𝒫  ( ◡ 𝐹  “  𝑥 ) )  ∧  ( ◡ 𝐹 ‘ 𝑦 )  ∈  𝑤 ) )  →  ( 𝐹  “  𝑤 )  ∈  𝒫  𝑥 ) | 
						
							| 69 | 65 68 | elind | ⊢ ( ( ( ( ( 𝐽  ∈  TopBases  ∧  𝐹 : 𝑋 –1-1-onto→ 𝑌 )  ∧  𝑥  ⊆  𝑌 )  ∧  𝑦  ∈  𝑥 )  ∧  ( 𝑤  ∈  ( 𝐽  ∩  𝒫  ( ◡ 𝐹  “  𝑥 ) )  ∧  ( ◡ 𝐹 ‘ 𝑦 )  ∈  𝑤 ) )  →  ( 𝐹  “  𝑤 )  ∈  ( ( 𝐽  qTop  𝐹 )  ∩  𝒫  𝑥 ) ) | 
						
							| 70 | 6 | sselda | ⊢ ( ( ( ( 𝐽  ∈  TopBases  ∧  𝐹 : 𝑋 –1-1-onto→ 𝑌 )  ∧  𝑥  ⊆  𝑌 )  ∧  𝑦  ∈  𝑥 )  →  𝑦  ∈  𝑌 ) | 
						
							| 71 | 70 | adantr | ⊢ ( ( ( ( ( 𝐽  ∈  TopBases  ∧  𝐹 : 𝑋 –1-1-onto→ 𝑌 )  ∧  𝑥  ⊆  𝑌 )  ∧  𝑦  ∈  𝑥 )  ∧  ( 𝑤  ∈  ( 𝐽  ∩  𝒫  ( ◡ 𝐹  “  𝑥 ) )  ∧  ( ◡ 𝐹 ‘ 𝑦 )  ∈  𝑤 ) )  →  𝑦  ∈  𝑌 ) | 
						
							| 72 |  | f1ocnvfv2 | ⊢ ( ( 𝐹 : 𝑋 –1-1-onto→ 𝑌  ∧  𝑦  ∈  𝑌 )  →  ( 𝐹 ‘ ( ◡ 𝐹 ‘ 𝑦 ) )  =  𝑦 ) | 
						
							| 73 | 43 71 72 | syl2anc | ⊢ ( ( ( ( ( 𝐽  ∈  TopBases  ∧  𝐹 : 𝑋 –1-1-onto→ 𝑌 )  ∧  𝑥  ⊆  𝑌 )  ∧  𝑦  ∈  𝑥 )  ∧  ( 𝑤  ∈  ( 𝐽  ∩  𝒫  ( ◡ 𝐹  “  𝑥 ) )  ∧  ( ◡ 𝐹 ‘ 𝑦 )  ∈  𝑤 ) )  →  ( 𝐹 ‘ ( ◡ 𝐹 ‘ 𝑦 ) )  =  𝑦 ) | 
						
							| 74 |  | f1ofn | ⊢ ( 𝐹 : 𝑋 –1-1-onto→ 𝑌  →  𝐹  Fn  𝑋 ) | 
						
							| 75 | 74 | adantl | ⊢ ( ( 𝐽  ∈  TopBases  ∧  𝐹 : 𝑋 –1-1-onto→ 𝑌 )  →  𝐹  Fn  𝑋 ) | 
						
							| 76 | 75 | ad3antrrr | ⊢ ( ( ( ( ( 𝐽  ∈  TopBases  ∧  𝐹 : 𝑋 –1-1-onto→ 𝑌 )  ∧  𝑥  ⊆  𝑌 )  ∧  𝑦  ∈  𝑥 )  ∧  ( 𝑤  ∈  ( 𝐽  ∩  𝒫  ( ◡ 𝐹  “  𝑥 ) )  ∧  ( ◡ 𝐹 ‘ 𝑦 )  ∈  𝑤 ) )  →  𝐹  Fn  𝑋 ) | 
						
							| 77 |  | simprr | ⊢ ( ( ( ( ( 𝐽  ∈  TopBases  ∧  𝐹 : 𝑋 –1-1-onto→ 𝑌 )  ∧  𝑥  ⊆  𝑌 )  ∧  𝑦  ∈  𝑥 )  ∧  ( 𝑤  ∈  ( 𝐽  ∩  𝒫  ( ◡ 𝐹  “  𝑥 ) )  ∧  ( ◡ 𝐹 ‘ 𝑦 )  ∈  𝑤 ) )  →  ( ◡ 𝐹 ‘ 𝑦 )  ∈  𝑤 ) | 
						
							| 78 |  | fnfvima | ⊢ ( ( 𝐹  Fn  𝑋  ∧  𝑤  ⊆  𝑋  ∧  ( ◡ 𝐹 ‘ 𝑦 )  ∈  𝑤 )  →  ( 𝐹 ‘ ( ◡ 𝐹 ‘ 𝑦 ) )  ∈  ( 𝐹  “  𝑤 ) ) | 
						
							| 79 | 76 58 77 78 | syl3anc | ⊢ ( ( ( ( ( 𝐽  ∈  TopBases  ∧  𝐹 : 𝑋 –1-1-onto→ 𝑌 )  ∧  𝑥  ⊆  𝑌 )  ∧  𝑦  ∈  𝑥 )  ∧  ( 𝑤  ∈  ( 𝐽  ∩  𝒫  ( ◡ 𝐹  “  𝑥 ) )  ∧  ( ◡ 𝐹 ‘ 𝑦 )  ∈  𝑤 ) )  →  ( 𝐹 ‘ ( ◡ 𝐹 ‘ 𝑦 ) )  ∈  ( 𝐹  “  𝑤 ) ) | 
						
							| 80 | 73 79 | eqeltrrd | ⊢ ( ( ( ( ( 𝐽  ∈  TopBases  ∧  𝐹 : 𝑋 –1-1-onto→ 𝑌 )  ∧  𝑥  ⊆  𝑌 )  ∧  𝑦  ∈  𝑥 )  ∧  ( 𝑤  ∈  ( 𝐽  ∩  𝒫  ( ◡ 𝐹  “  𝑥 ) )  ∧  ( ◡ 𝐹 ‘ 𝑦 )  ∈  𝑤 ) )  →  𝑦  ∈  ( 𝐹  “  𝑤 ) ) | 
						
							| 81 |  | eleq2 | ⊢ ( 𝑧  =  ( 𝐹  “  𝑤 )  →  ( 𝑦  ∈  𝑧  ↔  𝑦  ∈  ( 𝐹  “  𝑤 ) ) ) | 
						
							| 82 | 81 | rspcev | ⊢ ( ( ( 𝐹  “  𝑤 )  ∈  ( ( 𝐽  qTop  𝐹 )  ∩  𝒫  𝑥 )  ∧  𝑦  ∈  ( 𝐹  “  𝑤 ) )  →  ∃ 𝑧  ∈  ( ( 𝐽  qTop  𝐹 )  ∩  𝒫  𝑥 ) 𝑦  ∈  𝑧 ) | 
						
							| 83 | 69 80 82 | syl2anc | ⊢ ( ( ( ( ( 𝐽  ∈  TopBases  ∧  𝐹 : 𝑋 –1-1-onto→ 𝑌 )  ∧  𝑥  ⊆  𝑌 )  ∧  𝑦  ∈  𝑥 )  ∧  ( 𝑤  ∈  ( 𝐽  ∩  𝒫  ( ◡ 𝐹  “  𝑥 ) )  ∧  ( ◡ 𝐹 ‘ 𝑦 )  ∈  𝑤 ) )  →  ∃ 𝑧  ∈  ( ( 𝐽  qTop  𝐹 )  ∩  𝒫  𝑥 ) 𝑦  ∈  𝑧 ) | 
						
							| 84 | 83 | rexlimdvaa | ⊢ ( ( ( ( 𝐽  ∈  TopBases  ∧  𝐹 : 𝑋 –1-1-onto→ 𝑌 )  ∧  𝑥  ⊆  𝑌 )  ∧  𝑦  ∈  𝑥 )  →  ( ∃ 𝑤  ∈  ( 𝐽  ∩  𝒫  ( ◡ 𝐹  “  𝑥 ) ) ( ◡ 𝐹 ‘ 𝑦 )  ∈  𝑤  →  ∃ 𝑧  ∈  ( ( 𝐽  qTop  𝐹 )  ∩  𝒫  𝑥 ) 𝑦  ∈  𝑧 ) ) | 
						
							| 85 | 42 84 | impbid | ⊢ ( ( ( ( 𝐽  ∈  TopBases  ∧  𝐹 : 𝑋 –1-1-onto→ 𝑌 )  ∧  𝑥  ⊆  𝑌 )  ∧  𝑦  ∈  𝑥 )  →  ( ∃ 𝑧  ∈  ( ( 𝐽  qTop  𝐹 )  ∩  𝒫  𝑥 ) 𝑦  ∈  𝑧  ↔  ∃ 𝑤  ∈  ( 𝐽  ∩  𝒫  ( ◡ 𝐹  “  𝑥 ) ) ( ◡ 𝐹 ‘ 𝑦 )  ∈  𝑤 ) ) | 
						
							| 86 |  | eluni2 | ⊢ ( 𝑦  ∈  ∪  ( ( 𝐽  qTop  𝐹 )  ∩  𝒫  𝑥 )  ↔  ∃ 𝑧  ∈  ( ( 𝐽  qTop  𝐹 )  ∩  𝒫  𝑥 ) 𝑦  ∈  𝑧 ) | 
						
							| 87 |  | eluni2 | ⊢ ( ( ◡ 𝐹 ‘ 𝑦 )  ∈  ∪  ( 𝐽  ∩  𝒫  ( ◡ 𝐹  “  𝑥 ) )  ↔  ∃ 𝑤  ∈  ( 𝐽  ∩  𝒫  ( ◡ 𝐹  “  𝑥 ) ) ( ◡ 𝐹 ‘ 𝑦 )  ∈  𝑤 ) | 
						
							| 88 | 85 86 87 | 3bitr4g | ⊢ ( ( ( ( 𝐽  ∈  TopBases  ∧  𝐹 : 𝑋 –1-1-onto→ 𝑌 )  ∧  𝑥  ⊆  𝑌 )  ∧  𝑦  ∈  𝑥 )  →  ( 𝑦  ∈  ∪  ( ( 𝐽  qTop  𝐹 )  ∩  𝒫  𝑥 )  ↔  ( ◡ 𝐹 ‘ 𝑦 )  ∈  ∪  ( 𝐽  ∩  𝒫  ( ◡ 𝐹  “  𝑥 ) ) ) ) | 
						
							| 89 | 88 | ralbidva | ⊢ ( ( ( 𝐽  ∈  TopBases  ∧  𝐹 : 𝑋 –1-1-onto→ 𝑌 )  ∧  𝑥  ⊆  𝑌 )  →  ( ∀ 𝑦  ∈  𝑥 𝑦  ∈  ∪  ( ( 𝐽  qTop  𝐹 )  ∩  𝒫  𝑥 )  ↔  ∀ 𝑦  ∈  𝑥 ( ◡ 𝐹 ‘ 𝑦 )  ∈  ∪  ( 𝐽  ∩  𝒫  ( ◡ 𝐹  “  𝑥 ) ) ) ) | 
						
							| 90 | 16 89 | bitrid | ⊢ ( ( ( 𝐽  ∈  TopBases  ∧  𝐹 : 𝑋 –1-1-onto→ 𝑌 )  ∧  𝑥  ⊆  𝑌 )  →  ( 𝑥  ⊆  ∪  ( ( 𝐽  qTop  𝐹 )  ∩  𝒫  𝑥 )  ↔  ∀ 𝑦  ∈  𝑥 ( ◡ 𝐹 ‘ 𝑦 )  ∈  ∪  ( 𝐽  ∩  𝒫  ( ◡ 𝐹  “  𝑥 ) ) ) ) | 
						
							| 91 | 15 90 | bitr4d | ⊢ ( ( ( 𝐽  ∈  TopBases  ∧  𝐹 : 𝑋 –1-1-onto→ 𝑌 )  ∧  𝑥  ⊆  𝑌 )  →  ( ( ◡ 𝐹  “  𝑥 )  ⊆  ∪  ( 𝐽  ∩  𝒫  ( ◡ 𝐹  “  𝑥 ) )  ↔  𝑥  ⊆  ∪  ( ( 𝐽  qTop  𝐹 )  ∩  𝒫  𝑥 ) ) ) | 
						
							| 92 |  | eltg | ⊢ ( 𝐽  ∈  TopBases  →  ( ( ◡ 𝐹  “  𝑥 )  ∈  ( topGen ‘ 𝐽 )  ↔  ( ◡ 𝐹  “  𝑥 )  ⊆  ∪  ( 𝐽  ∩  𝒫  ( ◡ 𝐹  “  𝑥 ) ) ) ) | 
						
							| 93 | 92 | ad2antrr | ⊢ ( ( ( 𝐽  ∈  TopBases  ∧  𝐹 : 𝑋 –1-1-onto→ 𝑌 )  ∧  𝑥  ⊆  𝑌 )  →  ( ( ◡ 𝐹  “  𝑥 )  ∈  ( topGen ‘ 𝐽 )  ↔  ( ◡ 𝐹  “  𝑥 )  ⊆  ∪  ( 𝐽  ∩  𝒫  ( ◡ 𝐹  “  𝑥 ) ) ) ) | 
						
							| 94 |  | ovex | ⊢ ( 𝐽  qTop  𝐹 )  ∈  V | 
						
							| 95 |  | eltg | ⊢ ( ( 𝐽  qTop  𝐹 )  ∈  V  →  ( 𝑥  ∈  ( topGen ‘ ( 𝐽  qTop  𝐹 ) )  ↔  𝑥  ⊆  ∪  ( ( 𝐽  qTop  𝐹 )  ∩  𝒫  𝑥 ) ) ) | 
						
							| 96 | 94 95 | mp1i | ⊢ ( ( ( 𝐽  ∈  TopBases  ∧  𝐹 : 𝑋 –1-1-onto→ 𝑌 )  ∧  𝑥  ⊆  𝑌 )  →  ( 𝑥  ∈  ( topGen ‘ ( 𝐽  qTop  𝐹 ) )  ↔  𝑥  ⊆  ∪  ( ( 𝐽  qTop  𝐹 )  ∩  𝒫  𝑥 ) ) ) | 
						
							| 97 | 91 93 96 | 3bitr4d | ⊢ ( ( ( 𝐽  ∈  TopBases  ∧  𝐹 : 𝑋 –1-1-onto→ 𝑌 )  ∧  𝑥  ⊆  𝑌 )  →  ( ( ◡ 𝐹  “  𝑥 )  ∈  ( topGen ‘ 𝐽 )  ↔  𝑥  ∈  ( topGen ‘ ( 𝐽  qTop  𝐹 ) ) ) ) | 
						
							| 98 | 97 | pm5.32da | ⊢ ( ( 𝐽  ∈  TopBases  ∧  𝐹 : 𝑋 –1-1-onto→ 𝑌 )  →  ( ( 𝑥  ⊆  𝑌  ∧  ( ◡ 𝐹  “  𝑥 )  ∈  ( topGen ‘ 𝐽 ) )  ↔  ( 𝑥  ⊆  𝑌  ∧  𝑥  ∈  ( topGen ‘ ( 𝐽  qTop  𝐹 ) ) ) ) ) | 
						
							| 99 |  | tgtopon | ⊢ ( 𝐽  ∈  TopBases  →  ( topGen ‘ 𝐽 )  ∈  ( TopOn ‘ ∪  𝐽 ) ) | 
						
							| 100 | 99 | adantr | ⊢ ( ( 𝐽  ∈  TopBases  ∧  𝐹 : 𝑋 –1-1-onto→ 𝑌 )  →  ( topGen ‘ 𝐽 )  ∈  ( TopOn ‘ ∪  𝐽 ) ) | 
						
							| 101 | 1 | fveq2i | ⊢ ( TopOn ‘ 𝑋 )  =  ( TopOn ‘ ∪  𝐽 ) | 
						
							| 102 | 100 101 | eleqtrrdi | ⊢ ( ( 𝐽  ∈  TopBases  ∧  𝐹 : 𝑋 –1-1-onto→ 𝑌 )  →  ( topGen ‘ 𝐽 )  ∈  ( TopOn ‘ 𝑋 ) ) | 
						
							| 103 | 8 | adantl | ⊢ ( ( 𝐽  ∈  TopBases  ∧  𝐹 : 𝑋 –1-1-onto→ 𝑌 )  →  𝐹 : 𝑋 –onto→ 𝑌 ) | 
						
							| 104 |  | elqtop3 | ⊢ ( ( ( topGen ‘ 𝐽 )  ∈  ( TopOn ‘ 𝑋 )  ∧  𝐹 : 𝑋 –onto→ 𝑌 )  →  ( 𝑥  ∈  ( ( topGen ‘ 𝐽 )  qTop  𝐹 )  ↔  ( 𝑥  ⊆  𝑌  ∧  ( ◡ 𝐹  “  𝑥 )  ∈  ( topGen ‘ 𝐽 ) ) ) ) | 
						
							| 105 | 102 103 104 | syl2anc | ⊢ ( ( 𝐽  ∈  TopBases  ∧  𝐹 : 𝑋 –1-1-onto→ 𝑌 )  →  ( 𝑥  ∈  ( ( topGen ‘ 𝐽 )  qTop  𝐹 )  ↔  ( 𝑥  ⊆  𝑌  ∧  ( ◡ 𝐹  “  𝑥 )  ∈  ( topGen ‘ 𝐽 ) ) ) ) | 
						
							| 106 |  | unitg | ⊢ ( ( 𝐽  qTop  𝐹 )  ∈  V  →  ∪  ( topGen ‘ ( 𝐽  qTop  𝐹 ) )  =  ∪  ( 𝐽  qTop  𝐹 ) ) | 
						
							| 107 | 94 106 | ax-mp | ⊢ ∪  ( topGen ‘ ( 𝐽  qTop  𝐹 ) )  =  ∪  ( 𝐽  qTop  𝐹 ) | 
						
							| 108 | 1 | elqtop2 | ⊢ ( ( 𝐽  ∈  TopBases  ∧  𝐹 : 𝑋 –onto→ 𝑌 )  →  ( 𝑥  ∈  ( 𝐽  qTop  𝐹 )  ↔  ( 𝑥  ⊆  𝑌  ∧  ( ◡ 𝐹  “  𝑥 )  ∈  𝐽 ) ) ) | 
						
							| 109 | 8 108 | sylan2 | ⊢ ( ( 𝐽  ∈  TopBases  ∧  𝐹 : 𝑋 –1-1-onto→ 𝑌 )  →  ( 𝑥  ∈  ( 𝐽  qTop  𝐹 )  ↔  ( 𝑥  ⊆  𝑌  ∧  ( ◡ 𝐹  “  𝑥 )  ∈  𝐽 ) ) ) | 
						
							| 110 |  | simpl | ⊢ ( ( 𝑥  ⊆  𝑌  ∧  ( ◡ 𝐹  “  𝑥 )  ∈  𝐽 )  →  𝑥  ⊆  𝑌 ) | 
						
							| 111 |  | velpw | ⊢ ( 𝑥  ∈  𝒫  𝑌  ↔  𝑥  ⊆  𝑌 ) | 
						
							| 112 | 110 111 | sylibr | ⊢ ( ( 𝑥  ⊆  𝑌  ∧  ( ◡ 𝐹  “  𝑥 )  ∈  𝐽 )  →  𝑥  ∈  𝒫  𝑌 ) | 
						
							| 113 | 109 112 | biimtrdi | ⊢ ( ( 𝐽  ∈  TopBases  ∧  𝐹 : 𝑋 –1-1-onto→ 𝑌 )  →  ( 𝑥  ∈  ( 𝐽  qTop  𝐹 )  →  𝑥  ∈  𝒫  𝑌 ) ) | 
						
							| 114 | 113 | ssrdv | ⊢ ( ( 𝐽  ∈  TopBases  ∧  𝐹 : 𝑋 –1-1-onto→ 𝑌 )  →  ( 𝐽  qTop  𝐹 )  ⊆  𝒫  𝑌 ) | 
						
							| 115 |  | sspwuni | ⊢ ( ( 𝐽  qTop  𝐹 )  ⊆  𝒫  𝑌  ↔  ∪  ( 𝐽  qTop  𝐹 )  ⊆  𝑌 ) | 
						
							| 116 | 114 115 | sylib | ⊢ ( ( 𝐽  ∈  TopBases  ∧  𝐹 : 𝑋 –1-1-onto→ 𝑌 )  →  ∪  ( 𝐽  qTop  𝐹 )  ⊆  𝑌 ) | 
						
							| 117 | 107 116 | eqsstrid | ⊢ ( ( 𝐽  ∈  TopBases  ∧  𝐹 : 𝑋 –1-1-onto→ 𝑌 )  →  ∪  ( topGen ‘ ( 𝐽  qTop  𝐹 ) )  ⊆  𝑌 ) | 
						
							| 118 |  | sspwuni | ⊢ ( ( topGen ‘ ( 𝐽  qTop  𝐹 ) )  ⊆  𝒫  𝑌  ↔  ∪  ( topGen ‘ ( 𝐽  qTop  𝐹 ) )  ⊆  𝑌 ) | 
						
							| 119 | 117 118 | sylibr | ⊢ ( ( 𝐽  ∈  TopBases  ∧  𝐹 : 𝑋 –1-1-onto→ 𝑌 )  →  ( topGen ‘ ( 𝐽  qTop  𝐹 ) )  ⊆  𝒫  𝑌 ) | 
						
							| 120 | 119 | sseld | ⊢ ( ( 𝐽  ∈  TopBases  ∧  𝐹 : 𝑋 –1-1-onto→ 𝑌 )  →  ( 𝑥  ∈  ( topGen ‘ ( 𝐽  qTop  𝐹 ) )  →  𝑥  ∈  𝒫  𝑌 ) ) | 
						
							| 121 | 120 111 | imbitrdi | ⊢ ( ( 𝐽  ∈  TopBases  ∧  𝐹 : 𝑋 –1-1-onto→ 𝑌 )  →  ( 𝑥  ∈  ( topGen ‘ ( 𝐽  qTop  𝐹 ) )  →  𝑥  ⊆  𝑌 ) ) | 
						
							| 122 | 121 | pm4.71rd | ⊢ ( ( 𝐽  ∈  TopBases  ∧  𝐹 : 𝑋 –1-1-onto→ 𝑌 )  →  ( 𝑥  ∈  ( topGen ‘ ( 𝐽  qTop  𝐹 ) )  ↔  ( 𝑥  ⊆  𝑌  ∧  𝑥  ∈  ( topGen ‘ ( 𝐽  qTop  𝐹 ) ) ) ) ) | 
						
							| 123 | 98 105 122 | 3bitr4d | ⊢ ( ( 𝐽  ∈  TopBases  ∧  𝐹 : 𝑋 –1-1-onto→ 𝑌 )  →  ( 𝑥  ∈  ( ( topGen ‘ 𝐽 )  qTop  𝐹 )  ↔  𝑥  ∈  ( topGen ‘ ( 𝐽  qTop  𝐹 ) ) ) ) | 
						
							| 124 | 123 | eqrdv | ⊢ ( ( 𝐽  ∈  TopBases  ∧  𝐹 : 𝑋 –1-1-onto→ 𝑌 )  →  ( ( topGen ‘ 𝐽 )  qTop  𝐹 )  =  ( topGen ‘ ( 𝐽  qTop  𝐹 ) ) ) |