Step |
Hyp |
Ref |
Expression |
1 |
|
ovex |
⊢ ( 𝐵 ↾t 𝐴 ) ∈ V |
2 |
|
eltg3 |
⊢ ( ( 𝐵 ↾t 𝐴 ) ∈ V → ( 𝑥 ∈ ( topGen ‘ ( 𝐵 ↾t 𝐴 ) ) ↔ ∃ 𝑦 ( 𝑦 ⊆ ( 𝐵 ↾t 𝐴 ) ∧ 𝑥 = ∪ 𝑦 ) ) ) |
3 |
1 2
|
ax-mp |
⊢ ( 𝑥 ∈ ( topGen ‘ ( 𝐵 ↾t 𝐴 ) ) ↔ ∃ 𝑦 ( 𝑦 ⊆ ( 𝐵 ↾t 𝐴 ) ∧ 𝑥 = ∪ 𝑦 ) ) |
4 |
|
simpll |
⊢ ( ( ( 𝐵 ∈ 𝑉 ∧ 𝐴 ∈ 𝑊 ) ∧ 𝑦 ⊆ ( 𝐵 ↾t 𝐴 ) ) → 𝐵 ∈ 𝑉 ) |
5 |
|
funmpt |
⊢ Fun ( 𝑥 ∈ 𝐵 ↦ ( 𝑥 ∩ 𝐴 ) ) |
6 |
5
|
a1i |
⊢ ( ( ( 𝐵 ∈ 𝑉 ∧ 𝐴 ∈ 𝑊 ) ∧ 𝑦 ⊆ ( 𝐵 ↾t 𝐴 ) ) → Fun ( 𝑥 ∈ 𝐵 ↦ ( 𝑥 ∩ 𝐴 ) ) ) |
7 |
|
restval |
⊢ ( ( 𝐵 ∈ 𝑉 ∧ 𝐴 ∈ 𝑊 ) → ( 𝐵 ↾t 𝐴 ) = ran ( 𝑥 ∈ 𝐵 ↦ ( 𝑥 ∩ 𝐴 ) ) ) |
8 |
7
|
sseq2d |
⊢ ( ( 𝐵 ∈ 𝑉 ∧ 𝐴 ∈ 𝑊 ) → ( 𝑦 ⊆ ( 𝐵 ↾t 𝐴 ) ↔ 𝑦 ⊆ ran ( 𝑥 ∈ 𝐵 ↦ ( 𝑥 ∩ 𝐴 ) ) ) ) |
9 |
8
|
biimpa |
⊢ ( ( ( 𝐵 ∈ 𝑉 ∧ 𝐴 ∈ 𝑊 ) ∧ 𝑦 ⊆ ( 𝐵 ↾t 𝐴 ) ) → 𝑦 ⊆ ran ( 𝑥 ∈ 𝐵 ↦ ( 𝑥 ∩ 𝐴 ) ) ) |
10 |
|
vex |
⊢ 𝑥 ∈ V |
11 |
10
|
inex1 |
⊢ ( 𝑥 ∩ 𝐴 ) ∈ V |
12 |
11
|
rgenw |
⊢ ∀ 𝑥 ∈ 𝐵 ( 𝑥 ∩ 𝐴 ) ∈ V |
13 |
|
eqid |
⊢ ( 𝑥 ∈ 𝐵 ↦ ( 𝑥 ∩ 𝐴 ) ) = ( 𝑥 ∈ 𝐵 ↦ ( 𝑥 ∩ 𝐴 ) ) |
14 |
13
|
fnmpt |
⊢ ( ∀ 𝑥 ∈ 𝐵 ( 𝑥 ∩ 𝐴 ) ∈ V → ( 𝑥 ∈ 𝐵 ↦ ( 𝑥 ∩ 𝐴 ) ) Fn 𝐵 ) |
15 |
|
fnima |
⊢ ( ( 𝑥 ∈ 𝐵 ↦ ( 𝑥 ∩ 𝐴 ) ) Fn 𝐵 → ( ( 𝑥 ∈ 𝐵 ↦ ( 𝑥 ∩ 𝐴 ) ) “ 𝐵 ) = ran ( 𝑥 ∈ 𝐵 ↦ ( 𝑥 ∩ 𝐴 ) ) ) |
16 |
12 14 15
|
mp2b |
⊢ ( ( 𝑥 ∈ 𝐵 ↦ ( 𝑥 ∩ 𝐴 ) ) “ 𝐵 ) = ran ( 𝑥 ∈ 𝐵 ↦ ( 𝑥 ∩ 𝐴 ) ) |
17 |
9 16
|
sseqtrrdi |
⊢ ( ( ( 𝐵 ∈ 𝑉 ∧ 𝐴 ∈ 𝑊 ) ∧ 𝑦 ⊆ ( 𝐵 ↾t 𝐴 ) ) → 𝑦 ⊆ ( ( 𝑥 ∈ 𝐵 ↦ ( 𝑥 ∩ 𝐴 ) ) “ 𝐵 ) ) |
18 |
|
ssimaexg |
⊢ ( ( 𝐵 ∈ 𝑉 ∧ Fun ( 𝑥 ∈ 𝐵 ↦ ( 𝑥 ∩ 𝐴 ) ) ∧ 𝑦 ⊆ ( ( 𝑥 ∈ 𝐵 ↦ ( 𝑥 ∩ 𝐴 ) ) “ 𝐵 ) ) → ∃ 𝑧 ( 𝑧 ⊆ 𝐵 ∧ 𝑦 = ( ( 𝑥 ∈ 𝐵 ↦ ( 𝑥 ∩ 𝐴 ) ) “ 𝑧 ) ) ) |
19 |
4 6 17 18
|
syl3anc |
⊢ ( ( ( 𝐵 ∈ 𝑉 ∧ 𝐴 ∈ 𝑊 ) ∧ 𝑦 ⊆ ( 𝐵 ↾t 𝐴 ) ) → ∃ 𝑧 ( 𝑧 ⊆ 𝐵 ∧ 𝑦 = ( ( 𝑥 ∈ 𝐵 ↦ ( 𝑥 ∩ 𝐴 ) ) “ 𝑧 ) ) ) |
20 |
|
df-ima |
⊢ ( ( 𝑥 ∈ 𝐵 ↦ ( 𝑥 ∩ 𝐴 ) ) “ 𝑧 ) = ran ( ( 𝑥 ∈ 𝐵 ↦ ( 𝑥 ∩ 𝐴 ) ) ↾ 𝑧 ) |
21 |
|
resmpt |
⊢ ( 𝑧 ⊆ 𝐵 → ( ( 𝑥 ∈ 𝐵 ↦ ( 𝑥 ∩ 𝐴 ) ) ↾ 𝑧 ) = ( 𝑥 ∈ 𝑧 ↦ ( 𝑥 ∩ 𝐴 ) ) ) |
22 |
21
|
adantl |
⊢ ( ( ( 𝐵 ∈ 𝑉 ∧ 𝐴 ∈ 𝑊 ) ∧ 𝑧 ⊆ 𝐵 ) → ( ( 𝑥 ∈ 𝐵 ↦ ( 𝑥 ∩ 𝐴 ) ) ↾ 𝑧 ) = ( 𝑥 ∈ 𝑧 ↦ ( 𝑥 ∩ 𝐴 ) ) ) |
23 |
22
|
rneqd |
⊢ ( ( ( 𝐵 ∈ 𝑉 ∧ 𝐴 ∈ 𝑊 ) ∧ 𝑧 ⊆ 𝐵 ) → ran ( ( 𝑥 ∈ 𝐵 ↦ ( 𝑥 ∩ 𝐴 ) ) ↾ 𝑧 ) = ran ( 𝑥 ∈ 𝑧 ↦ ( 𝑥 ∩ 𝐴 ) ) ) |
24 |
20 23
|
syl5eq |
⊢ ( ( ( 𝐵 ∈ 𝑉 ∧ 𝐴 ∈ 𝑊 ) ∧ 𝑧 ⊆ 𝐵 ) → ( ( 𝑥 ∈ 𝐵 ↦ ( 𝑥 ∩ 𝐴 ) ) “ 𝑧 ) = ran ( 𝑥 ∈ 𝑧 ↦ ( 𝑥 ∩ 𝐴 ) ) ) |
25 |
24
|
unieqd |
⊢ ( ( ( 𝐵 ∈ 𝑉 ∧ 𝐴 ∈ 𝑊 ) ∧ 𝑧 ⊆ 𝐵 ) → ∪ ( ( 𝑥 ∈ 𝐵 ↦ ( 𝑥 ∩ 𝐴 ) ) “ 𝑧 ) = ∪ ran ( 𝑥 ∈ 𝑧 ↦ ( 𝑥 ∩ 𝐴 ) ) ) |
26 |
11
|
dfiun3 |
⊢ ∪ 𝑥 ∈ 𝑧 ( 𝑥 ∩ 𝐴 ) = ∪ ran ( 𝑥 ∈ 𝑧 ↦ ( 𝑥 ∩ 𝐴 ) ) |
27 |
25 26
|
eqtr4di |
⊢ ( ( ( 𝐵 ∈ 𝑉 ∧ 𝐴 ∈ 𝑊 ) ∧ 𝑧 ⊆ 𝐵 ) → ∪ ( ( 𝑥 ∈ 𝐵 ↦ ( 𝑥 ∩ 𝐴 ) ) “ 𝑧 ) = ∪ 𝑥 ∈ 𝑧 ( 𝑥 ∩ 𝐴 ) ) |
28 |
|
iunin1 |
⊢ ∪ 𝑥 ∈ 𝑧 ( 𝑥 ∩ 𝐴 ) = ( ∪ 𝑥 ∈ 𝑧 𝑥 ∩ 𝐴 ) |
29 |
27 28
|
eqtrdi |
⊢ ( ( ( 𝐵 ∈ 𝑉 ∧ 𝐴 ∈ 𝑊 ) ∧ 𝑧 ⊆ 𝐵 ) → ∪ ( ( 𝑥 ∈ 𝐵 ↦ ( 𝑥 ∩ 𝐴 ) ) “ 𝑧 ) = ( ∪ 𝑥 ∈ 𝑧 𝑥 ∩ 𝐴 ) ) |
30 |
|
fvex |
⊢ ( topGen ‘ 𝐵 ) ∈ V |
31 |
|
simpr |
⊢ ( ( 𝐵 ∈ 𝑉 ∧ 𝐴 ∈ 𝑊 ) → 𝐴 ∈ 𝑊 ) |
32 |
|
uniiun |
⊢ ∪ 𝑧 = ∪ 𝑥 ∈ 𝑧 𝑥 |
33 |
|
eltg3i |
⊢ ( ( 𝐵 ∈ 𝑉 ∧ 𝑧 ⊆ 𝐵 ) → ∪ 𝑧 ∈ ( topGen ‘ 𝐵 ) ) |
34 |
32 33
|
eqeltrrid |
⊢ ( ( 𝐵 ∈ 𝑉 ∧ 𝑧 ⊆ 𝐵 ) → ∪ 𝑥 ∈ 𝑧 𝑥 ∈ ( topGen ‘ 𝐵 ) ) |
35 |
34
|
adantlr |
⊢ ( ( ( 𝐵 ∈ 𝑉 ∧ 𝐴 ∈ 𝑊 ) ∧ 𝑧 ⊆ 𝐵 ) → ∪ 𝑥 ∈ 𝑧 𝑥 ∈ ( topGen ‘ 𝐵 ) ) |
36 |
|
elrestr |
⊢ ( ( ( topGen ‘ 𝐵 ) ∈ V ∧ 𝐴 ∈ 𝑊 ∧ ∪ 𝑥 ∈ 𝑧 𝑥 ∈ ( topGen ‘ 𝐵 ) ) → ( ∪ 𝑥 ∈ 𝑧 𝑥 ∩ 𝐴 ) ∈ ( ( topGen ‘ 𝐵 ) ↾t 𝐴 ) ) |
37 |
30 31 35 36
|
mp3an2ani |
⊢ ( ( ( 𝐵 ∈ 𝑉 ∧ 𝐴 ∈ 𝑊 ) ∧ 𝑧 ⊆ 𝐵 ) → ( ∪ 𝑥 ∈ 𝑧 𝑥 ∩ 𝐴 ) ∈ ( ( topGen ‘ 𝐵 ) ↾t 𝐴 ) ) |
38 |
29 37
|
eqeltrd |
⊢ ( ( ( 𝐵 ∈ 𝑉 ∧ 𝐴 ∈ 𝑊 ) ∧ 𝑧 ⊆ 𝐵 ) → ∪ ( ( 𝑥 ∈ 𝐵 ↦ ( 𝑥 ∩ 𝐴 ) ) “ 𝑧 ) ∈ ( ( topGen ‘ 𝐵 ) ↾t 𝐴 ) ) |
39 |
|
unieq |
⊢ ( 𝑦 = ( ( 𝑥 ∈ 𝐵 ↦ ( 𝑥 ∩ 𝐴 ) ) “ 𝑧 ) → ∪ 𝑦 = ∪ ( ( 𝑥 ∈ 𝐵 ↦ ( 𝑥 ∩ 𝐴 ) ) “ 𝑧 ) ) |
40 |
39
|
eleq1d |
⊢ ( 𝑦 = ( ( 𝑥 ∈ 𝐵 ↦ ( 𝑥 ∩ 𝐴 ) ) “ 𝑧 ) → ( ∪ 𝑦 ∈ ( ( topGen ‘ 𝐵 ) ↾t 𝐴 ) ↔ ∪ ( ( 𝑥 ∈ 𝐵 ↦ ( 𝑥 ∩ 𝐴 ) ) “ 𝑧 ) ∈ ( ( topGen ‘ 𝐵 ) ↾t 𝐴 ) ) ) |
41 |
38 40
|
syl5ibrcom |
⊢ ( ( ( 𝐵 ∈ 𝑉 ∧ 𝐴 ∈ 𝑊 ) ∧ 𝑧 ⊆ 𝐵 ) → ( 𝑦 = ( ( 𝑥 ∈ 𝐵 ↦ ( 𝑥 ∩ 𝐴 ) ) “ 𝑧 ) → ∪ 𝑦 ∈ ( ( topGen ‘ 𝐵 ) ↾t 𝐴 ) ) ) |
42 |
41
|
expimpd |
⊢ ( ( 𝐵 ∈ 𝑉 ∧ 𝐴 ∈ 𝑊 ) → ( ( 𝑧 ⊆ 𝐵 ∧ 𝑦 = ( ( 𝑥 ∈ 𝐵 ↦ ( 𝑥 ∩ 𝐴 ) ) “ 𝑧 ) ) → ∪ 𝑦 ∈ ( ( topGen ‘ 𝐵 ) ↾t 𝐴 ) ) ) |
43 |
42
|
exlimdv |
⊢ ( ( 𝐵 ∈ 𝑉 ∧ 𝐴 ∈ 𝑊 ) → ( ∃ 𝑧 ( 𝑧 ⊆ 𝐵 ∧ 𝑦 = ( ( 𝑥 ∈ 𝐵 ↦ ( 𝑥 ∩ 𝐴 ) ) “ 𝑧 ) ) → ∪ 𝑦 ∈ ( ( topGen ‘ 𝐵 ) ↾t 𝐴 ) ) ) |
44 |
43
|
adantr |
⊢ ( ( ( 𝐵 ∈ 𝑉 ∧ 𝐴 ∈ 𝑊 ) ∧ 𝑦 ⊆ ( 𝐵 ↾t 𝐴 ) ) → ( ∃ 𝑧 ( 𝑧 ⊆ 𝐵 ∧ 𝑦 = ( ( 𝑥 ∈ 𝐵 ↦ ( 𝑥 ∩ 𝐴 ) ) “ 𝑧 ) ) → ∪ 𝑦 ∈ ( ( topGen ‘ 𝐵 ) ↾t 𝐴 ) ) ) |
45 |
19 44
|
mpd |
⊢ ( ( ( 𝐵 ∈ 𝑉 ∧ 𝐴 ∈ 𝑊 ) ∧ 𝑦 ⊆ ( 𝐵 ↾t 𝐴 ) ) → ∪ 𝑦 ∈ ( ( topGen ‘ 𝐵 ) ↾t 𝐴 ) ) |
46 |
|
eleq1 |
⊢ ( 𝑥 = ∪ 𝑦 → ( 𝑥 ∈ ( ( topGen ‘ 𝐵 ) ↾t 𝐴 ) ↔ ∪ 𝑦 ∈ ( ( topGen ‘ 𝐵 ) ↾t 𝐴 ) ) ) |
47 |
45 46
|
syl5ibrcom |
⊢ ( ( ( 𝐵 ∈ 𝑉 ∧ 𝐴 ∈ 𝑊 ) ∧ 𝑦 ⊆ ( 𝐵 ↾t 𝐴 ) ) → ( 𝑥 = ∪ 𝑦 → 𝑥 ∈ ( ( topGen ‘ 𝐵 ) ↾t 𝐴 ) ) ) |
48 |
47
|
expimpd |
⊢ ( ( 𝐵 ∈ 𝑉 ∧ 𝐴 ∈ 𝑊 ) → ( ( 𝑦 ⊆ ( 𝐵 ↾t 𝐴 ) ∧ 𝑥 = ∪ 𝑦 ) → 𝑥 ∈ ( ( topGen ‘ 𝐵 ) ↾t 𝐴 ) ) ) |
49 |
48
|
exlimdv |
⊢ ( ( 𝐵 ∈ 𝑉 ∧ 𝐴 ∈ 𝑊 ) → ( ∃ 𝑦 ( 𝑦 ⊆ ( 𝐵 ↾t 𝐴 ) ∧ 𝑥 = ∪ 𝑦 ) → 𝑥 ∈ ( ( topGen ‘ 𝐵 ) ↾t 𝐴 ) ) ) |
50 |
3 49
|
syl5bi |
⊢ ( ( 𝐵 ∈ 𝑉 ∧ 𝐴 ∈ 𝑊 ) → ( 𝑥 ∈ ( topGen ‘ ( 𝐵 ↾t 𝐴 ) ) → 𝑥 ∈ ( ( topGen ‘ 𝐵 ) ↾t 𝐴 ) ) ) |
51 |
50
|
ssrdv |
⊢ ( ( 𝐵 ∈ 𝑉 ∧ 𝐴 ∈ 𝑊 ) → ( topGen ‘ ( 𝐵 ↾t 𝐴 ) ) ⊆ ( ( topGen ‘ 𝐵 ) ↾t 𝐴 ) ) |
52 |
|
restval |
⊢ ( ( ( topGen ‘ 𝐵 ) ∈ V ∧ 𝐴 ∈ 𝑊 ) → ( ( topGen ‘ 𝐵 ) ↾t 𝐴 ) = ran ( 𝑤 ∈ ( topGen ‘ 𝐵 ) ↦ ( 𝑤 ∩ 𝐴 ) ) ) |
53 |
30 31 52
|
sylancr |
⊢ ( ( 𝐵 ∈ 𝑉 ∧ 𝐴 ∈ 𝑊 ) → ( ( topGen ‘ 𝐵 ) ↾t 𝐴 ) = ran ( 𝑤 ∈ ( topGen ‘ 𝐵 ) ↦ ( 𝑤 ∩ 𝐴 ) ) ) |
54 |
|
eltg3 |
⊢ ( 𝐵 ∈ 𝑉 → ( 𝑤 ∈ ( topGen ‘ 𝐵 ) ↔ ∃ 𝑧 ( 𝑧 ⊆ 𝐵 ∧ 𝑤 = ∪ 𝑧 ) ) ) |
55 |
54
|
adantr |
⊢ ( ( 𝐵 ∈ 𝑉 ∧ 𝐴 ∈ 𝑊 ) → ( 𝑤 ∈ ( topGen ‘ 𝐵 ) ↔ ∃ 𝑧 ( 𝑧 ⊆ 𝐵 ∧ 𝑤 = ∪ 𝑧 ) ) ) |
56 |
32
|
ineq1i |
⊢ ( ∪ 𝑧 ∩ 𝐴 ) = ( ∪ 𝑥 ∈ 𝑧 𝑥 ∩ 𝐴 ) |
57 |
56 28
|
eqtr4i |
⊢ ( ∪ 𝑧 ∩ 𝐴 ) = ∪ 𝑥 ∈ 𝑧 ( 𝑥 ∩ 𝐴 ) |
58 |
|
simplll |
⊢ ( ( ( ( 𝐵 ∈ 𝑉 ∧ 𝐴 ∈ 𝑊 ) ∧ 𝑧 ⊆ 𝐵 ) ∧ 𝑥 ∈ 𝑧 ) → 𝐵 ∈ 𝑉 ) |
59 |
|
simpllr |
⊢ ( ( ( ( 𝐵 ∈ 𝑉 ∧ 𝐴 ∈ 𝑊 ) ∧ 𝑧 ⊆ 𝐵 ) ∧ 𝑥 ∈ 𝑧 ) → 𝐴 ∈ 𝑊 ) |
60 |
|
simpr |
⊢ ( ( ( 𝐵 ∈ 𝑉 ∧ 𝐴 ∈ 𝑊 ) ∧ 𝑧 ⊆ 𝐵 ) → 𝑧 ⊆ 𝐵 ) |
61 |
60
|
sselda |
⊢ ( ( ( ( 𝐵 ∈ 𝑉 ∧ 𝐴 ∈ 𝑊 ) ∧ 𝑧 ⊆ 𝐵 ) ∧ 𝑥 ∈ 𝑧 ) → 𝑥 ∈ 𝐵 ) |
62 |
|
elrestr |
⊢ ( ( 𝐵 ∈ 𝑉 ∧ 𝐴 ∈ 𝑊 ∧ 𝑥 ∈ 𝐵 ) → ( 𝑥 ∩ 𝐴 ) ∈ ( 𝐵 ↾t 𝐴 ) ) |
63 |
58 59 61 62
|
syl3anc |
⊢ ( ( ( ( 𝐵 ∈ 𝑉 ∧ 𝐴 ∈ 𝑊 ) ∧ 𝑧 ⊆ 𝐵 ) ∧ 𝑥 ∈ 𝑧 ) → ( 𝑥 ∩ 𝐴 ) ∈ ( 𝐵 ↾t 𝐴 ) ) |
64 |
63
|
fmpttd |
⊢ ( ( ( 𝐵 ∈ 𝑉 ∧ 𝐴 ∈ 𝑊 ) ∧ 𝑧 ⊆ 𝐵 ) → ( 𝑥 ∈ 𝑧 ↦ ( 𝑥 ∩ 𝐴 ) ) : 𝑧 ⟶ ( 𝐵 ↾t 𝐴 ) ) |
65 |
64
|
frnd |
⊢ ( ( ( 𝐵 ∈ 𝑉 ∧ 𝐴 ∈ 𝑊 ) ∧ 𝑧 ⊆ 𝐵 ) → ran ( 𝑥 ∈ 𝑧 ↦ ( 𝑥 ∩ 𝐴 ) ) ⊆ ( 𝐵 ↾t 𝐴 ) ) |
66 |
|
eltg3i |
⊢ ( ( ( 𝐵 ↾t 𝐴 ) ∈ V ∧ ran ( 𝑥 ∈ 𝑧 ↦ ( 𝑥 ∩ 𝐴 ) ) ⊆ ( 𝐵 ↾t 𝐴 ) ) → ∪ ran ( 𝑥 ∈ 𝑧 ↦ ( 𝑥 ∩ 𝐴 ) ) ∈ ( topGen ‘ ( 𝐵 ↾t 𝐴 ) ) ) |
67 |
1 65 66
|
sylancr |
⊢ ( ( ( 𝐵 ∈ 𝑉 ∧ 𝐴 ∈ 𝑊 ) ∧ 𝑧 ⊆ 𝐵 ) → ∪ ran ( 𝑥 ∈ 𝑧 ↦ ( 𝑥 ∩ 𝐴 ) ) ∈ ( topGen ‘ ( 𝐵 ↾t 𝐴 ) ) ) |
68 |
26 67
|
eqeltrid |
⊢ ( ( ( 𝐵 ∈ 𝑉 ∧ 𝐴 ∈ 𝑊 ) ∧ 𝑧 ⊆ 𝐵 ) → ∪ 𝑥 ∈ 𝑧 ( 𝑥 ∩ 𝐴 ) ∈ ( topGen ‘ ( 𝐵 ↾t 𝐴 ) ) ) |
69 |
57 68
|
eqeltrid |
⊢ ( ( ( 𝐵 ∈ 𝑉 ∧ 𝐴 ∈ 𝑊 ) ∧ 𝑧 ⊆ 𝐵 ) → ( ∪ 𝑧 ∩ 𝐴 ) ∈ ( topGen ‘ ( 𝐵 ↾t 𝐴 ) ) ) |
70 |
|
ineq1 |
⊢ ( 𝑤 = ∪ 𝑧 → ( 𝑤 ∩ 𝐴 ) = ( ∪ 𝑧 ∩ 𝐴 ) ) |
71 |
70
|
eleq1d |
⊢ ( 𝑤 = ∪ 𝑧 → ( ( 𝑤 ∩ 𝐴 ) ∈ ( topGen ‘ ( 𝐵 ↾t 𝐴 ) ) ↔ ( ∪ 𝑧 ∩ 𝐴 ) ∈ ( topGen ‘ ( 𝐵 ↾t 𝐴 ) ) ) ) |
72 |
69 71
|
syl5ibrcom |
⊢ ( ( ( 𝐵 ∈ 𝑉 ∧ 𝐴 ∈ 𝑊 ) ∧ 𝑧 ⊆ 𝐵 ) → ( 𝑤 = ∪ 𝑧 → ( 𝑤 ∩ 𝐴 ) ∈ ( topGen ‘ ( 𝐵 ↾t 𝐴 ) ) ) ) |
73 |
72
|
expimpd |
⊢ ( ( 𝐵 ∈ 𝑉 ∧ 𝐴 ∈ 𝑊 ) → ( ( 𝑧 ⊆ 𝐵 ∧ 𝑤 = ∪ 𝑧 ) → ( 𝑤 ∩ 𝐴 ) ∈ ( topGen ‘ ( 𝐵 ↾t 𝐴 ) ) ) ) |
74 |
73
|
exlimdv |
⊢ ( ( 𝐵 ∈ 𝑉 ∧ 𝐴 ∈ 𝑊 ) → ( ∃ 𝑧 ( 𝑧 ⊆ 𝐵 ∧ 𝑤 = ∪ 𝑧 ) → ( 𝑤 ∩ 𝐴 ) ∈ ( topGen ‘ ( 𝐵 ↾t 𝐴 ) ) ) ) |
75 |
55 74
|
sylbid |
⊢ ( ( 𝐵 ∈ 𝑉 ∧ 𝐴 ∈ 𝑊 ) → ( 𝑤 ∈ ( topGen ‘ 𝐵 ) → ( 𝑤 ∩ 𝐴 ) ∈ ( topGen ‘ ( 𝐵 ↾t 𝐴 ) ) ) ) |
76 |
75
|
imp |
⊢ ( ( ( 𝐵 ∈ 𝑉 ∧ 𝐴 ∈ 𝑊 ) ∧ 𝑤 ∈ ( topGen ‘ 𝐵 ) ) → ( 𝑤 ∩ 𝐴 ) ∈ ( topGen ‘ ( 𝐵 ↾t 𝐴 ) ) ) |
77 |
76
|
fmpttd |
⊢ ( ( 𝐵 ∈ 𝑉 ∧ 𝐴 ∈ 𝑊 ) → ( 𝑤 ∈ ( topGen ‘ 𝐵 ) ↦ ( 𝑤 ∩ 𝐴 ) ) : ( topGen ‘ 𝐵 ) ⟶ ( topGen ‘ ( 𝐵 ↾t 𝐴 ) ) ) |
78 |
77
|
frnd |
⊢ ( ( 𝐵 ∈ 𝑉 ∧ 𝐴 ∈ 𝑊 ) → ran ( 𝑤 ∈ ( topGen ‘ 𝐵 ) ↦ ( 𝑤 ∩ 𝐴 ) ) ⊆ ( topGen ‘ ( 𝐵 ↾t 𝐴 ) ) ) |
79 |
53 78
|
eqsstrd |
⊢ ( ( 𝐵 ∈ 𝑉 ∧ 𝐴 ∈ 𝑊 ) → ( ( topGen ‘ 𝐵 ) ↾t 𝐴 ) ⊆ ( topGen ‘ ( 𝐵 ↾t 𝐴 ) ) ) |
80 |
51 79
|
eqssd |
⊢ ( ( 𝐵 ∈ 𝑉 ∧ 𝐴 ∈ 𝑊 ) → ( topGen ‘ ( 𝐵 ↾t 𝐴 ) ) = ( ( topGen ‘ 𝐵 ) ↾t 𝐴 ) ) |