| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							tgsas.p | 
							⊢ 𝑃  =  ( Base ‘ 𝐺 )  | 
						
						
							| 2 | 
							
								
							 | 
							tgsas.m | 
							⊢  −   =  ( dist ‘ 𝐺 )  | 
						
						
							| 3 | 
							
								
							 | 
							tgsas.i | 
							⊢ 𝐼  =  ( Itv ‘ 𝐺 )  | 
						
						
							| 4 | 
							
								
							 | 
							tgsas.g | 
							⊢ ( 𝜑  →  𝐺  ∈  TarskiG )  | 
						
						
							| 5 | 
							
								
							 | 
							tgsas.a | 
							⊢ ( 𝜑  →  𝐴  ∈  𝑃 )  | 
						
						
							| 6 | 
							
								
							 | 
							tgsas.b | 
							⊢ ( 𝜑  →  𝐵  ∈  𝑃 )  | 
						
						
							| 7 | 
							
								
							 | 
							tgsas.c | 
							⊢ ( 𝜑  →  𝐶  ∈  𝑃 )  | 
						
						
							| 8 | 
							
								
							 | 
							tgsas.d | 
							⊢ ( 𝜑  →  𝐷  ∈  𝑃 )  | 
						
						
							| 9 | 
							
								
							 | 
							tgsas.e | 
							⊢ ( 𝜑  →  𝐸  ∈  𝑃 )  | 
						
						
							| 10 | 
							
								
							 | 
							tgsas.f | 
							⊢ ( 𝜑  →  𝐹  ∈  𝑃 )  | 
						
						
							| 11 | 
							
								
							 | 
							tgsas.1 | 
							⊢ ( 𝜑  →  ( 𝐴  −  𝐵 )  =  ( 𝐷  −  𝐸 ) )  | 
						
						
							| 12 | 
							
								
							 | 
							tgsas.2 | 
							⊢ ( 𝜑  →  〈“ 𝐴 𝐵 𝐶 ”〉 ( cgrA ‘ 𝐺 ) 〈“ 𝐷 𝐸 𝐹 ”〉 )  | 
						
						
							| 13 | 
							
								
							 | 
							tgsas.3 | 
							⊢ ( 𝜑  →  ( 𝐵  −  𝐶 )  =  ( 𝐸  −  𝐹 ) )  | 
						
						
							| 14 | 
							
								
							 | 
							eqid | 
							⊢ ( hlG ‘ 𝐺 )  =  ( hlG ‘ 𝐺 )  | 
						
						
							| 15 | 
							
								1 3 14 4 5 6 7 8 9 10 12
							 | 
							cgrane1 | 
							⊢ ( 𝜑  →  𝐴  ≠  𝐵 )  | 
						
						
							| 16 | 
							
								1 3 14 5 5 6 4 15
							 | 
							hlid | 
							⊢ ( 𝜑  →  𝐴 ( ( hlG ‘ 𝐺 ) ‘ 𝐵 ) 𝐴 )  | 
						
						
							| 17 | 
							
								1 3 14 4 5 6 7 8 9 10 12
							 | 
							cgrane2 | 
							⊢ ( 𝜑  →  𝐵  ≠  𝐶 )  | 
						
						
							| 18 | 
							
								17
							 | 
							necomd | 
							⊢ ( 𝜑  →  𝐶  ≠  𝐵 )  | 
						
						
							| 19 | 
							
								1 3 14 7 5 6 4 18
							 | 
							hlid | 
							⊢ ( 𝜑  →  𝐶 ( ( hlG ‘ 𝐺 ) ‘ 𝐵 ) 𝐶 )  | 
						
						
							| 20 | 
							
								1 2 3 4 5 6 8 9 11
							 | 
							tgcgrcomlr | 
							⊢ ( 𝜑  →  ( 𝐵  −  𝐴 )  =  ( 𝐸  −  𝐷 ) )  | 
						
						
							| 21 | 
							
								1 3 14 4 5 6 7 8 9 10 12 5 2 7 16 19 20 13
							 | 
							cgracgr | 
							⊢ ( 𝜑  →  ( 𝐴  −  𝐶 )  =  ( 𝐷  −  𝐹 ) )  | 
						
						
							| 22 | 
							
								1 2 3 4 5 7 8 10 21
							 | 
							tgcgrcomlr | 
							⊢ ( 𝜑  →  ( 𝐶  −  𝐴 )  =  ( 𝐹  −  𝐷 ) )  |