Step |
Hyp |
Ref |
Expression |
1 |
|
tgsas.p |
⊢ 𝑃 = ( Base ‘ 𝐺 ) |
2 |
|
tgsas.m |
⊢ − = ( dist ‘ 𝐺 ) |
3 |
|
tgsas.i |
⊢ 𝐼 = ( Itv ‘ 𝐺 ) |
4 |
|
tgsas.g |
⊢ ( 𝜑 → 𝐺 ∈ TarskiG ) |
5 |
|
tgsas.a |
⊢ ( 𝜑 → 𝐴 ∈ 𝑃 ) |
6 |
|
tgsas.b |
⊢ ( 𝜑 → 𝐵 ∈ 𝑃 ) |
7 |
|
tgsas.c |
⊢ ( 𝜑 → 𝐶 ∈ 𝑃 ) |
8 |
|
tgsas.d |
⊢ ( 𝜑 → 𝐷 ∈ 𝑃 ) |
9 |
|
tgsas.e |
⊢ ( 𝜑 → 𝐸 ∈ 𝑃 ) |
10 |
|
tgsas.f |
⊢ ( 𝜑 → 𝐹 ∈ 𝑃 ) |
11 |
|
tgsas.1 |
⊢ ( 𝜑 → ( 𝐴 − 𝐵 ) = ( 𝐷 − 𝐸 ) ) |
12 |
|
tgsas.2 |
⊢ ( 𝜑 → 〈“ 𝐴 𝐵 𝐶 ”〉 ( cgrA ‘ 𝐺 ) 〈“ 𝐷 𝐸 𝐹 ”〉 ) |
13 |
|
tgsas.3 |
⊢ ( 𝜑 → ( 𝐵 − 𝐶 ) = ( 𝐸 − 𝐹 ) ) |
14 |
|
eqid |
⊢ ( hlG ‘ 𝐺 ) = ( hlG ‘ 𝐺 ) |
15 |
1 3 14 4 5 6 7 8 9 10 12
|
cgrane1 |
⊢ ( 𝜑 → 𝐴 ≠ 𝐵 ) |
16 |
1 3 14 5 5 6 4 15
|
hlid |
⊢ ( 𝜑 → 𝐴 ( ( hlG ‘ 𝐺 ) ‘ 𝐵 ) 𝐴 ) |
17 |
1 3 14 4 5 6 7 8 9 10 12
|
cgrane2 |
⊢ ( 𝜑 → 𝐵 ≠ 𝐶 ) |
18 |
17
|
necomd |
⊢ ( 𝜑 → 𝐶 ≠ 𝐵 ) |
19 |
1 3 14 7 5 6 4 18
|
hlid |
⊢ ( 𝜑 → 𝐶 ( ( hlG ‘ 𝐺 ) ‘ 𝐵 ) 𝐶 ) |
20 |
1 2 3 4 5 6 8 9 11
|
tgcgrcomlr |
⊢ ( 𝜑 → ( 𝐵 − 𝐴 ) = ( 𝐸 − 𝐷 ) ) |
21 |
1 3 14 4 5 6 7 8 9 10 12 5 2 7 16 19 20 13
|
cgracgr |
⊢ ( 𝜑 → ( 𝐴 − 𝐶 ) = ( 𝐷 − 𝐹 ) ) |
22 |
1 2 3 4 5 7 8 10 21
|
tgcgrcomlr |
⊢ ( 𝜑 → ( 𝐶 − 𝐴 ) = ( 𝐹 − 𝐷 ) ) |