Metamath Proof Explorer


Theorem tgsas1

Description: First congruence theorem: SAS (Side-Angle-Side): If two pairs of sides of two triangles are equal in length, and the included angles are equal in measurement, then third sides are equal in length. Theorem 11.49 of Schwabhauser p. 107. (Contributed by Thierry Arnoux, 1-Aug-2020)

Ref Expression
Hypotheses tgsas.p 𝑃 = ( Base ‘ 𝐺 )
tgsas.m = ( dist ‘ 𝐺 )
tgsas.i 𝐼 = ( Itv ‘ 𝐺 )
tgsas.g ( 𝜑𝐺 ∈ TarskiG )
tgsas.a ( 𝜑𝐴𝑃 )
tgsas.b ( 𝜑𝐵𝑃 )
tgsas.c ( 𝜑𝐶𝑃 )
tgsas.d ( 𝜑𝐷𝑃 )
tgsas.e ( 𝜑𝐸𝑃 )
tgsas.f ( 𝜑𝐹𝑃 )
tgsas.1 ( 𝜑 → ( 𝐴 𝐵 ) = ( 𝐷 𝐸 ) )
tgsas.2 ( 𝜑 → ⟨“ 𝐴 𝐵 𝐶 ”⟩ ( cgrA ‘ 𝐺 ) ⟨“ 𝐷 𝐸 𝐹 ”⟩ )
tgsas.3 ( 𝜑 → ( 𝐵 𝐶 ) = ( 𝐸 𝐹 ) )
Assertion tgsas1 ( 𝜑 → ( 𝐶 𝐴 ) = ( 𝐹 𝐷 ) )

Proof

Step Hyp Ref Expression
1 tgsas.p 𝑃 = ( Base ‘ 𝐺 )
2 tgsas.m = ( dist ‘ 𝐺 )
3 tgsas.i 𝐼 = ( Itv ‘ 𝐺 )
4 tgsas.g ( 𝜑𝐺 ∈ TarskiG )
5 tgsas.a ( 𝜑𝐴𝑃 )
6 tgsas.b ( 𝜑𝐵𝑃 )
7 tgsas.c ( 𝜑𝐶𝑃 )
8 tgsas.d ( 𝜑𝐷𝑃 )
9 tgsas.e ( 𝜑𝐸𝑃 )
10 tgsas.f ( 𝜑𝐹𝑃 )
11 tgsas.1 ( 𝜑 → ( 𝐴 𝐵 ) = ( 𝐷 𝐸 ) )
12 tgsas.2 ( 𝜑 → ⟨“ 𝐴 𝐵 𝐶 ”⟩ ( cgrA ‘ 𝐺 ) ⟨“ 𝐷 𝐸 𝐹 ”⟩ )
13 tgsas.3 ( 𝜑 → ( 𝐵 𝐶 ) = ( 𝐸 𝐹 ) )
14 eqid ( hlG ‘ 𝐺 ) = ( hlG ‘ 𝐺 )
15 1 3 14 4 5 6 7 8 9 10 12 cgrane1 ( 𝜑𝐴𝐵 )
16 1 3 14 5 5 6 4 15 hlid ( 𝜑𝐴 ( ( hlG ‘ 𝐺 ) ‘ 𝐵 ) 𝐴 )
17 1 3 14 4 5 6 7 8 9 10 12 cgrane2 ( 𝜑𝐵𝐶 )
18 17 necomd ( 𝜑𝐶𝐵 )
19 1 3 14 7 5 6 4 18 hlid ( 𝜑𝐶 ( ( hlG ‘ 𝐺 ) ‘ 𝐵 ) 𝐶 )
20 1 2 3 4 5 6 8 9 11 tgcgrcomlr ( 𝜑 → ( 𝐵 𝐴 ) = ( 𝐸 𝐷 ) )
21 1 3 14 4 5 6 7 8 9 10 12 5 2 7 16 19 20 13 cgracgr ( 𝜑 → ( 𝐴 𝐶 ) = ( 𝐷 𝐹 ) )
22 1 2 3 4 5 7 8 10 21 tgcgrcomlr ( 𝜑 → ( 𝐶 𝐴 ) = ( 𝐹 𝐷 ) )