| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							tkgeom.p | 
							⊢ 𝑃  =  ( Base ‘ 𝐺 )  | 
						
						
							| 2 | 
							
								
							 | 
							tkgeom.d | 
							⊢  −   =  ( dist ‘ 𝐺 )  | 
						
						
							| 3 | 
							
								
							 | 
							tkgeom.i | 
							⊢ 𝐼  =  ( Itv ‘ 𝐺 )  | 
						
						
							| 4 | 
							
								
							 | 
							tkgeom.g | 
							⊢ ( 𝜑  →  𝐺  ∈  TarskiG )  | 
						
						
							| 5 | 
							
								
							 | 
							tgcgrextend.a | 
							⊢ ( 𝜑  →  𝐴  ∈  𝑃 )  | 
						
						
							| 6 | 
							
								
							 | 
							tgcgrextend.b | 
							⊢ ( 𝜑  →  𝐵  ∈  𝑃 )  | 
						
						
							| 7 | 
							
								
							 | 
							tgcgrextend.c | 
							⊢ ( 𝜑  →  𝐶  ∈  𝑃 )  | 
						
						
							| 8 | 
							
								
							 | 
							tgcgrextend.d | 
							⊢ ( 𝜑  →  𝐷  ∈  𝑃 )  | 
						
						
							| 9 | 
							
								
							 | 
							tgcgrextend.e | 
							⊢ ( 𝜑  →  𝐸  ∈  𝑃 )  | 
						
						
							| 10 | 
							
								
							 | 
							tgcgrextend.f | 
							⊢ ( 𝜑  →  𝐹  ∈  𝑃 )  | 
						
						
							| 11 | 
							
								
							 | 
							tgsegconeq.1 | 
							⊢ ( 𝜑  →  𝐷  ≠  𝐴 )  | 
						
						
							| 12 | 
							
								
							 | 
							tgsegconeq.2 | 
							⊢ ( 𝜑  →  𝐴  ∈  ( 𝐷 𝐼 𝐸 ) )  | 
						
						
							| 13 | 
							
								
							 | 
							tgsegconeq.3 | 
							⊢ ( 𝜑  →  𝐴  ∈  ( 𝐷 𝐼 𝐹 ) )  | 
						
						
							| 14 | 
							
								
							 | 
							tgsegconeq.4 | 
							⊢ ( 𝜑  →  ( 𝐴  −  𝐸 )  =  ( 𝐵  −  𝐶 ) )  | 
						
						
							| 15 | 
							
								
							 | 
							tgsegconeq.5 | 
							⊢ ( 𝜑  →  ( 𝐴  −  𝐹 )  =  ( 𝐵  −  𝐶 ) )  | 
						
						
							| 16 | 
							
								
							 | 
							eqidd | 
							⊢ ( 𝜑  →  ( 𝐷  −  𝐴 )  =  ( 𝐷  −  𝐴 ) )  | 
						
						
							| 17 | 
							
								
							 | 
							eqidd | 
							⊢ ( 𝜑  →  ( 𝐴  −  𝐸 )  =  ( 𝐴  −  𝐸 ) )  | 
						
						
							| 18 | 
							
								14 15
							 | 
							eqtr4d | 
							⊢ ( 𝜑  →  ( 𝐴  −  𝐸 )  =  ( 𝐴  −  𝐹 ) )  | 
						
						
							| 19 | 
							
								1 2 3 4 8 5 9 8 5 10 12 13 16 18
							 | 
							tgcgrextend | 
							⊢ ( 𝜑  →  ( 𝐷  −  𝐸 )  =  ( 𝐷  −  𝐹 ) )  | 
						
						
							| 20 | 
							
								1 2 3 4 8 5 9 8 5 9 9 10 11 12 12 16 17 19 18
							 | 
							axtg5seg | 
							⊢ ( 𝜑  →  ( 𝐸  −  𝐸 )  =  ( 𝐸  −  𝐹 ) )  | 
						
						
							| 21 | 
							
								20
							 | 
							eqcomd | 
							⊢ ( 𝜑  →  ( 𝐸  −  𝐹 )  =  ( 𝐸  −  𝐸 ) )  | 
						
						
							| 22 | 
							
								1 2 3 4 9 10 9 21
							 | 
							axtgcgrid | 
							⊢ ( 𝜑  →  𝐸  =  𝐹 )  |