| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ssrin |
⊢ ( 𝐵 ⊆ 𝐶 → ( 𝐵 ∩ 𝒫 𝑥 ) ⊆ ( 𝐶 ∩ 𝒫 𝑥 ) ) |
| 2 |
1
|
unissd |
⊢ ( 𝐵 ⊆ 𝐶 → ∪ ( 𝐵 ∩ 𝒫 𝑥 ) ⊆ ∪ ( 𝐶 ∩ 𝒫 𝑥 ) ) |
| 3 |
|
sstr2 |
⊢ ( 𝑥 ⊆ ∪ ( 𝐵 ∩ 𝒫 𝑥 ) → ( ∪ ( 𝐵 ∩ 𝒫 𝑥 ) ⊆ ∪ ( 𝐶 ∩ 𝒫 𝑥 ) → 𝑥 ⊆ ∪ ( 𝐶 ∩ 𝒫 𝑥 ) ) ) |
| 4 |
2 3
|
syl5com |
⊢ ( 𝐵 ⊆ 𝐶 → ( 𝑥 ⊆ ∪ ( 𝐵 ∩ 𝒫 𝑥 ) → 𝑥 ⊆ ∪ ( 𝐶 ∩ 𝒫 𝑥 ) ) ) |
| 5 |
4
|
adantl |
⊢ ( ( 𝐶 ∈ 𝑉 ∧ 𝐵 ⊆ 𝐶 ) → ( 𝑥 ⊆ ∪ ( 𝐵 ∩ 𝒫 𝑥 ) → 𝑥 ⊆ ∪ ( 𝐶 ∩ 𝒫 𝑥 ) ) ) |
| 6 |
|
ssexg |
⊢ ( ( 𝐵 ⊆ 𝐶 ∧ 𝐶 ∈ 𝑉 ) → 𝐵 ∈ V ) |
| 7 |
6
|
ancoms |
⊢ ( ( 𝐶 ∈ 𝑉 ∧ 𝐵 ⊆ 𝐶 ) → 𝐵 ∈ V ) |
| 8 |
|
eltg |
⊢ ( 𝐵 ∈ V → ( 𝑥 ∈ ( topGen ‘ 𝐵 ) ↔ 𝑥 ⊆ ∪ ( 𝐵 ∩ 𝒫 𝑥 ) ) ) |
| 9 |
7 8
|
syl |
⊢ ( ( 𝐶 ∈ 𝑉 ∧ 𝐵 ⊆ 𝐶 ) → ( 𝑥 ∈ ( topGen ‘ 𝐵 ) ↔ 𝑥 ⊆ ∪ ( 𝐵 ∩ 𝒫 𝑥 ) ) ) |
| 10 |
|
eltg |
⊢ ( 𝐶 ∈ 𝑉 → ( 𝑥 ∈ ( topGen ‘ 𝐶 ) ↔ 𝑥 ⊆ ∪ ( 𝐶 ∩ 𝒫 𝑥 ) ) ) |
| 11 |
10
|
adantr |
⊢ ( ( 𝐶 ∈ 𝑉 ∧ 𝐵 ⊆ 𝐶 ) → ( 𝑥 ∈ ( topGen ‘ 𝐶 ) ↔ 𝑥 ⊆ ∪ ( 𝐶 ∩ 𝒫 𝑥 ) ) ) |
| 12 |
5 9 11
|
3imtr4d |
⊢ ( ( 𝐶 ∈ 𝑉 ∧ 𝐵 ⊆ 𝐶 ) → ( 𝑥 ∈ ( topGen ‘ 𝐵 ) → 𝑥 ∈ ( topGen ‘ 𝐶 ) ) ) |
| 13 |
12
|
ssrdv |
⊢ ( ( 𝐶 ∈ 𝑉 ∧ 𝐵 ⊆ 𝐶 ) → ( topGen ‘ 𝐵 ) ⊆ ( topGen ‘ 𝐶 ) ) |