| Step | Hyp | Ref | Expression | 
						
							| 1 |  | simpr | ⊢ ( ( 𝐵  ∈  𝑉  ∧  ∪  𝐵  =  ∪  𝐶 )  →  ∪  𝐵  =  ∪  𝐶 ) | 
						
							| 2 |  | uniexg | ⊢ ( 𝐵  ∈  𝑉  →  ∪  𝐵  ∈  V ) | 
						
							| 3 | 2 | adantr | ⊢ ( ( 𝐵  ∈  𝑉  ∧  ∪  𝐵  =  ∪  𝐶 )  →  ∪  𝐵  ∈  V ) | 
						
							| 4 | 1 3 | eqeltrrd | ⊢ ( ( 𝐵  ∈  𝑉  ∧  ∪  𝐵  =  ∪  𝐶 )  →  ∪  𝐶  ∈  V ) | 
						
							| 5 |  | uniexb | ⊢ ( 𝐶  ∈  V  ↔  ∪  𝐶  ∈  V ) | 
						
							| 6 | 4 5 | sylibr | ⊢ ( ( 𝐵  ∈  𝑉  ∧  ∪  𝐵  =  ∪  𝐶 )  →  𝐶  ∈  V ) | 
						
							| 7 |  | tgss3 | ⊢ ( ( 𝐵  ∈  𝑉  ∧  𝐶  ∈  V )  →  ( ( topGen ‘ 𝐵 )  ⊆  ( topGen ‘ 𝐶 )  ↔  𝐵  ⊆  ( topGen ‘ 𝐶 ) ) ) | 
						
							| 8 | 6 7 | syldan | ⊢ ( ( 𝐵  ∈  𝑉  ∧  ∪  𝐵  =  ∪  𝐶 )  →  ( ( topGen ‘ 𝐵 )  ⊆  ( topGen ‘ 𝐶 )  ↔  𝐵  ⊆  ( topGen ‘ 𝐶 ) ) ) | 
						
							| 9 |  | eltg2b | ⊢ ( 𝐶  ∈  V  →  ( 𝑦  ∈  ( topGen ‘ 𝐶 )  ↔  ∀ 𝑥  ∈  𝑦 ∃ 𝑧  ∈  𝐶 ( 𝑥  ∈  𝑧  ∧  𝑧  ⊆  𝑦 ) ) ) | 
						
							| 10 | 6 9 | syl | ⊢ ( ( 𝐵  ∈  𝑉  ∧  ∪  𝐵  =  ∪  𝐶 )  →  ( 𝑦  ∈  ( topGen ‘ 𝐶 )  ↔  ∀ 𝑥  ∈  𝑦 ∃ 𝑧  ∈  𝐶 ( 𝑥  ∈  𝑧  ∧  𝑧  ⊆  𝑦 ) ) ) | 
						
							| 11 |  | elunii | ⊢ ( ( 𝑥  ∈  𝑦  ∧  𝑦  ∈  𝐵 )  →  𝑥  ∈  ∪  𝐵 ) | 
						
							| 12 | 11 | ancoms | ⊢ ( ( 𝑦  ∈  𝐵  ∧  𝑥  ∈  𝑦 )  →  𝑥  ∈  ∪  𝐵 ) | 
						
							| 13 |  | biimt | ⊢ ( 𝑥  ∈  ∪  𝐵  →  ( ∃ 𝑧  ∈  𝐶 ( 𝑥  ∈  𝑧  ∧  𝑧  ⊆  𝑦 )  ↔  ( 𝑥  ∈  ∪  𝐵  →  ∃ 𝑧  ∈  𝐶 ( 𝑥  ∈  𝑧  ∧  𝑧  ⊆  𝑦 ) ) ) ) | 
						
							| 14 | 12 13 | syl | ⊢ ( ( 𝑦  ∈  𝐵  ∧  𝑥  ∈  𝑦 )  →  ( ∃ 𝑧  ∈  𝐶 ( 𝑥  ∈  𝑧  ∧  𝑧  ⊆  𝑦 )  ↔  ( 𝑥  ∈  ∪  𝐵  →  ∃ 𝑧  ∈  𝐶 ( 𝑥  ∈  𝑧  ∧  𝑧  ⊆  𝑦 ) ) ) ) | 
						
							| 15 | 14 | ralbidva | ⊢ ( 𝑦  ∈  𝐵  →  ( ∀ 𝑥  ∈  𝑦 ∃ 𝑧  ∈  𝐶 ( 𝑥  ∈  𝑧  ∧  𝑧  ⊆  𝑦 )  ↔  ∀ 𝑥  ∈  𝑦 ( 𝑥  ∈  ∪  𝐵  →  ∃ 𝑧  ∈  𝐶 ( 𝑥  ∈  𝑧  ∧  𝑧  ⊆  𝑦 ) ) ) ) | 
						
							| 16 | 10 15 | sylan9bb | ⊢ ( ( ( 𝐵  ∈  𝑉  ∧  ∪  𝐵  =  ∪  𝐶 )  ∧  𝑦  ∈  𝐵 )  →  ( 𝑦  ∈  ( topGen ‘ 𝐶 )  ↔  ∀ 𝑥  ∈  𝑦 ( 𝑥  ∈  ∪  𝐵  →  ∃ 𝑧  ∈  𝐶 ( 𝑥  ∈  𝑧  ∧  𝑧  ⊆  𝑦 ) ) ) ) | 
						
							| 17 |  | ralcom3 | ⊢ ( ∀ 𝑥  ∈  𝑦 ( 𝑥  ∈  ∪  𝐵  →  ∃ 𝑧  ∈  𝐶 ( 𝑥  ∈  𝑧  ∧  𝑧  ⊆  𝑦 ) )  ↔  ∀ 𝑥  ∈  ∪  𝐵 ( 𝑥  ∈  𝑦  →  ∃ 𝑧  ∈  𝐶 ( 𝑥  ∈  𝑧  ∧  𝑧  ⊆  𝑦 ) ) ) | 
						
							| 18 | 16 17 | bitrdi | ⊢ ( ( ( 𝐵  ∈  𝑉  ∧  ∪  𝐵  =  ∪  𝐶 )  ∧  𝑦  ∈  𝐵 )  →  ( 𝑦  ∈  ( topGen ‘ 𝐶 )  ↔  ∀ 𝑥  ∈  ∪  𝐵 ( 𝑥  ∈  𝑦  →  ∃ 𝑧  ∈  𝐶 ( 𝑥  ∈  𝑧  ∧  𝑧  ⊆  𝑦 ) ) ) ) | 
						
							| 19 | 18 | ralbidva | ⊢ ( ( 𝐵  ∈  𝑉  ∧  ∪  𝐵  =  ∪  𝐶 )  →  ( ∀ 𝑦  ∈  𝐵 𝑦  ∈  ( topGen ‘ 𝐶 )  ↔  ∀ 𝑦  ∈  𝐵 ∀ 𝑥  ∈  ∪  𝐵 ( 𝑥  ∈  𝑦  →  ∃ 𝑧  ∈  𝐶 ( 𝑥  ∈  𝑧  ∧  𝑧  ⊆  𝑦 ) ) ) ) | 
						
							| 20 |  | dfss3 | ⊢ ( 𝐵  ⊆  ( topGen ‘ 𝐶 )  ↔  ∀ 𝑦  ∈  𝐵 𝑦  ∈  ( topGen ‘ 𝐶 ) ) | 
						
							| 21 |  | ralcom | ⊢ ( ∀ 𝑥  ∈  ∪  𝐵 ∀ 𝑦  ∈  𝐵 ( 𝑥  ∈  𝑦  →  ∃ 𝑧  ∈  𝐶 ( 𝑥  ∈  𝑧  ∧  𝑧  ⊆  𝑦 ) )  ↔  ∀ 𝑦  ∈  𝐵 ∀ 𝑥  ∈  ∪  𝐵 ( 𝑥  ∈  𝑦  →  ∃ 𝑧  ∈  𝐶 ( 𝑥  ∈  𝑧  ∧  𝑧  ⊆  𝑦 ) ) ) | 
						
							| 22 | 19 20 21 | 3bitr4g | ⊢ ( ( 𝐵  ∈  𝑉  ∧  ∪  𝐵  =  ∪  𝐶 )  →  ( 𝐵  ⊆  ( topGen ‘ 𝐶 )  ↔  ∀ 𝑥  ∈  ∪  𝐵 ∀ 𝑦  ∈  𝐵 ( 𝑥  ∈  𝑦  →  ∃ 𝑧  ∈  𝐶 ( 𝑥  ∈  𝑧  ∧  𝑧  ⊆  𝑦 ) ) ) ) | 
						
							| 23 | 8 22 | bitrd | ⊢ ( ( 𝐵  ∈  𝑉  ∧  ∪  𝐵  =  ∪  𝐶 )  →  ( ( topGen ‘ 𝐵 )  ⊆  ( topGen ‘ 𝐶 )  ↔  ∀ 𝑥  ∈  ∪  𝐵 ∀ 𝑦  ∈  𝐵 ( 𝑥  ∈  𝑦  →  ∃ 𝑧  ∈  𝐶 ( 𝑥  ∈  𝑧  ∧  𝑧  ⊆  𝑦 ) ) ) ) |