Description: Third congruence theorem: SSS. Theorem 11.51 of Schwabhauser p. 109. (Contributed by Thierry Arnoux, 1-Aug-2020)
Ref | Expression | ||
---|---|---|---|
Hypotheses | tgsas.p | ⊢ 𝑃 = ( Base ‘ 𝐺 ) | |
tgsas.m | ⊢ − = ( dist ‘ 𝐺 ) | ||
tgsas.i | ⊢ 𝐼 = ( Itv ‘ 𝐺 ) | ||
tgsas.g | ⊢ ( 𝜑 → 𝐺 ∈ TarskiG ) | ||
tgsas.a | ⊢ ( 𝜑 → 𝐴 ∈ 𝑃 ) | ||
tgsas.b | ⊢ ( 𝜑 → 𝐵 ∈ 𝑃 ) | ||
tgsas.c | ⊢ ( 𝜑 → 𝐶 ∈ 𝑃 ) | ||
tgsas.d | ⊢ ( 𝜑 → 𝐷 ∈ 𝑃 ) | ||
tgsas.e | ⊢ ( 𝜑 → 𝐸 ∈ 𝑃 ) | ||
tgsas.f | ⊢ ( 𝜑 → 𝐹 ∈ 𝑃 ) | ||
tgsss.1 | ⊢ ( 𝜑 → ( 𝐴 − 𝐵 ) = ( 𝐷 − 𝐸 ) ) | ||
tgsss.2 | ⊢ ( 𝜑 → ( 𝐵 − 𝐶 ) = ( 𝐸 − 𝐹 ) ) | ||
tgsss.3 | ⊢ ( 𝜑 → ( 𝐶 − 𝐴 ) = ( 𝐹 − 𝐷 ) ) | ||
tgsss.4 | ⊢ ( 𝜑 → 𝐴 ≠ 𝐵 ) | ||
tgsss.5 | ⊢ ( 𝜑 → 𝐵 ≠ 𝐶 ) | ||
tgsss.6 | ⊢ ( 𝜑 → 𝐶 ≠ 𝐴 ) | ||
Assertion | tgsss3 | ⊢ ( 𝜑 → 〈“ 𝐵 𝐶 𝐴 ”〉 ( cgrA ‘ 𝐺 ) 〈“ 𝐸 𝐹 𝐷 ”〉 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | tgsas.p | ⊢ 𝑃 = ( Base ‘ 𝐺 ) | |
2 | tgsas.m | ⊢ − = ( dist ‘ 𝐺 ) | |
3 | tgsas.i | ⊢ 𝐼 = ( Itv ‘ 𝐺 ) | |
4 | tgsas.g | ⊢ ( 𝜑 → 𝐺 ∈ TarskiG ) | |
5 | tgsas.a | ⊢ ( 𝜑 → 𝐴 ∈ 𝑃 ) | |
6 | tgsas.b | ⊢ ( 𝜑 → 𝐵 ∈ 𝑃 ) | |
7 | tgsas.c | ⊢ ( 𝜑 → 𝐶 ∈ 𝑃 ) | |
8 | tgsas.d | ⊢ ( 𝜑 → 𝐷 ∈ 𝑃 ) | |
9 | tgsas.e | ⊢ ( 𝜑 → 𝐸 ∈ 𝑃 ) | |
10 | tgsas.f | ⊢ ( 𝜑 → 𝐹 ∈ 𝑃 ) | |
11 | tgsss.1 | ⊢ ( 𝜑 → ( 𝐴 − 𝐵 ) = ( 𝐷 − 𝐸 ) ) | |
12 | tgsss.2 | ⊢ ( 𝜑 → ( 𝐵 − 𝐶 ) = ( 𝐸 − 𝐹 ) ) | |
13 | tgsss.3 | ⊢ ( 𝜑 → ( 𝐶 − 𝐴 ) = ( 𝐹 − 𝐷 ) ) | |
14 | tgsss.4 | ⊢ ( 𝜑 → 𝐴 ≠ 𝐵 ) | |
15 | tgsss.5 | ⊢ ( 𝜑 → 𝐵 ≠ 𝐶 ) | |
16 | tgsss.6 | ⊢ ( 𝜑 → 𝐶 ≠ 𝐴 ) | |
17 | 1 2 3 4 6 7 5 9 10 8 12 13 11 15 16 14 | tgsss1 | ⊢ ( 𝜑 → 〈“ 𝐵 𝐶 𝐴 ”〉 ( cgrA ‘ 𝐺 ) 〈“ 𝐸 𝐹 𝐷 ”〉 ) |