Metamath Proof Explorer


Theorem tgtop

Description: A topology is its own basis. (Contributed by NM, 18-Jul-2006)

Ref Expression
Assertion tgtop ( 𝐽 ∈ Top → ( topGen ‘ 𝐽 ) = 𝐽 )

Proof

Step Hyp Ref Expression
1 eltg3 ( 𝐽 ∈ Top → ( 𝑥 ∈ ( topGen ‘ 𝐽 ) ↔ ∃ 𝑦 ( 𝑦𝐽𝑥 = 𝑦 ) ) )
2 simpr ( ( ( 𝐽 ∈ Top ∧ 𝑦𝐽 ) ∧ 𝑥 = 𝑦 ) → 𝑥 = 𝑦 )
3 uniopn ( ( 𝐽 ∈ Top ∧ 𝑦𝐽 ) → 𝑦𝐽 )
4 3 adantr ( ( ( 𝐽 ∈ Top ∧ 𝑦𝐽 ) ∧ 𝑥 = 𝑦 ) → 𝑦𝐽 )
5 2 4 eqeltrd ( ( ( 𝐽 ∈ Top ∧ 𝑦𝐽 ) ∧ 𝑥 = 𝑦 ) → 𝑥𝐽 )
6 5 expl ( 𝐽 ∈ Top → ( ( 𝑦𝐽𝑥 = 𝑦 ) → 𝑥𝐽 ) )
7 6 exlimdv ( 𝐽 ∈ Top → ( ∃ 𝑦 ( 𝑦𝐽𝑥 = 𝑦 ) → 𝑥𝐽 ) )
8 1 7 sylbid ( 𝐽 ∈ Top → ( 𝑥 ∈ ( topGen ‘ 𝐽 ) → 𝑥𝐽 ) )
9 8 ssrdv ( 𝐽 ∈ Top → ( topGen ‘ 𝐽 ) ⊆ 𝐽 )
10 bastg ( 𝐽 ∈ Top → 𝐽 ⊆ ( topGen ‘ 𝐽 ) )
11 9 10 eqssd ( 𝐽 ∈ Top → ( topGen ‘ 𝐽 ) = 𝐽 )