Step |
Hyp |
Ref |
Expression |
1 |
|
eltg3 |
⊢ ( 𝐽 ∈ Top → ( 𝑥 ∈ ( topGen ‘ 𝐽 ) ↔ ∃ 𝑦 ( 𝑦 ⊆ 𝐽 ∧ 𝑥 = ∪ 𝑦 ) ) ) |
2 |
|
simpr |
⊢ ( ( ( 𝐽 ∈ Top ∧ 𝑦 ⊆ 𝐽 ) ∧ 𝑥 = ∪ 𝑦 ) → 𝑥 = ∪ 𝑦 ) |
3 |
|
uniopn |
⊢ ( ( 𝐽 ∈ Top ∧ 𝑦 ⊆ 𝐽 ) → ∪ 𝑦 ∈ 𝐽 ) |
4 |
3
|
adantr |
⊢ ( ( ( 𝐽 ∈ Top ∧ 𝑦 ⊆ 𝐽 ) ∧ 𝑥 = ∪ 𝑦 ) → ∪ 𝑦 ∈ 𝐽 ) |
5 |
2 4
|
eqeltrd |
⊢ ( ( ( 𝐽 ∈ Top ∧ 𝑦 ⊆ 𝐽 ) ∧ 𝑥 = ∪ 𝑦 ) → 𝑥 ∈ 𝐽 ) |
6 |
5
|
expl |
⊢ ( 𝐽 ∈ Top → ( ( 𝑦 ⊆ 𝐽 ∧ 𝑥 = ∪ 𝑦 ) → 𝑥 ∈ 𝐽 ) ) |
7 |
6
|
exlimdv |
⊢ ( 𝐽 ∈ Top → ( ∃ 𝑦 ( 𝑦 ⊆ 𝐽 ∧ 𝑥 = ∪ 𝑦 ) → 𝑥 ∈ 𝐽 ) ) |
8 |
1 7
|
sylbid |
⊢ ( 𝐽 ∈ Top → ( 𝑥 ∈ ( topGen ‘ 𝐽 ) → 𝑥 ∈ 𝐽 ) ) |
9 |
8
|
ssrdv |
⊢ ( 𝐽 ∈ Top → ( topGen ‘ 𝐽 ) ⊆ 𝐽 ) |
10 |
|
bastg |
⊢ ( 𝐽 ∈ Top → 𝐽 ⊆ ( topGen ‘ 𝐽 ) ) |
11 |
9 10
|
eqssd |
⊢ ( 𝐽 ∈ Top → ( topGen ‘ 𝐽 ) = 𝐽 ) |