Metamath Proof Explorer


Theorem tgtop11

Description: The topology generation function is one-to-one when applied to completed topologies. (Contributed by NM, 18-Jul-2006)

Ref Expression
Assertion tgtop11 ( ( 𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ ( topGen ‘ 𝐽 ) = ( topGen ‘ 𝐾 ) ) → 𝐽 = 𝐾 )

Proof

Step Hyp Ref Expression
1 tgtop ( 𝐽 ∈ Top → ( topGen ‘ 𝐽 ) = 𝐽 )
2 tgtop ( 𝐾 ∈ Top → ( topGen ‘ 𝐾 ) = 𝐾 )
3 1 2 eqeqan12d ( ( 𝐽 ∈ Top ∧ 𝐾 ∈ Top ) → ( ( topGen ‘ 𝐽 ) = ( topGen ‘ 𝐾 ) ↔ 𝐽 = 𝐾 ) )
4 3 biimp3a ( ( 𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ ( topGen ‘ 𝐽 ) = ( topGen ‘ 𝐾 ) ) → 𝐽 = 𝐾 )