Metamath Proof Explorer


Theorem tgtopon

Description: A basis generates a topology on U. B . (Contributed by Mario Carneiro, 14-Aug-2015)

Ref Expression
Assertion tgtopon ( 𝐵 ∈ TopBases → ( topGen ‘ 𝐵 ) ∈ ( TopOn ‘ 𝐵 ) )

Proof

Step Hyp Ref Expression
1 tgcl ( 𝐵 ∈ TopBases → ( topGen ‘ 𝐵 ) ∈ Top )
2 unitg ( 𝐵 ∈ TopBases → ( topGen ‘ 𝐵 ) = 𝐵 )
3 2 eqcomd ( 𝐵 ∈ TopBases → 𝐵 = ( topGen ‘ 𝐵 ) )
4 istopon ( ( topGen ‘ 𝐵 ) ∈ ( TopOn ‘ 𝐵 ) ↔ ( ( topGen ‘ 𝐵 ) ∈ Top ∧ 𝐵 = ( topGen ‘ 𝐵 ) ) )
5 1 3 4 sylanbrc ( 𝐵 ∈ TopBases → ( topGen ‘ 𝐵 ) ∈ ( TopOn ‘ 𝐵 ) )