| Step |
Hyp |
Ref |
Expression |
| 1 |
|
tgval |
⊢ ( 𝐵 ∈ 𝑉 → ( topGen ‘ 𝐵 ) = { 𝑥 ∣ 𝑥 ⊆ ∪ ( 𝐵 ∩ 𝒫 𝑥 ) } ) |
| 2 |
|
inss1 |
⊢ ( 𝐵 ∩ 𝒫 𝑥 ) ⊆ 𝐵 |
| 3 |
2
|
unissi |
⊢ ∪ ( 𝐵 ∩ 𝒫 𝑥 ) ⊆ ∪ 𝐵 |
| 4 |
3
|
sseli |
⊢ ( 𝑦 ∈ ∪ ( 𝐵 ∩ 𝒫 𝑥 ) → 𝑦 ∈ ∪ 𝐵 ) |
| 5 |
4
|
pm4.71ri |
⊢ ( 𝑦 ∈ ∪ ( 𝐵 ∩ 𝒫 𝑥 ) ↔ ( 𝑦 ∈ ∪ 𝐵 ∧ 𝑦 ∈ ∪ ( 𝐵 ∩ 𝒫 𝑥 ) ) ) |
| 6 |
5
|
ralbii |
⊢ ( ∀ 𝑦 ∈ 𝑥 𝑦 ∈ ∪ ( 𝐵 ∩ 𝒫 𝑥 ) ↔ ∀ 𝑦 ∈ 𝑥 ( 𝑦 ∈ ∪ 𝐵 ∧ 𝑦 ∈ ∪ ( 𝐵 ∩ 𝒫 𝑥 ) ) ) |
| 7 |
|
r19.26 |
⊢ ( ∀ 𝑦 ∈ 𝑥 ( 𝑦 ∈ ∪ 𝐵 ∧ 𝑦 ∈ ∪ ( 𝐵 ∩ 𝒫 𝑥 ) ) ↔ ( ∀ 𝑦 ∈ 𝑥 𝑦 ∈ ∪ 𝐵 ∧ ∀ 𝑦 ∈ 𝑥 𝑦 ∈ ∪ ( 𝐵 ∩ 𝒫 𝑥 ) ) ) |
| 8 |
6 7
|
bitri |
⊢ ( ∀ 𝑦 ∈ 𝑥 𝑦 ∈ ∪ ( 𝐵 ∩ 𝒫 𝑥 ) ↔ ( ∀ 𝑦 ∈ 𝑥 𝑦 ∈ ∪ 𝐵 ∧ ∀ 𝑦 ∈ 𝑥 𝑦 ∈ ∪ ( 𝐵 ∩ 𝒫 𝑥 ) ) ) |
| 9 |
|
dfss3 |
⊢ ( 𝑥 ⊆ ∪ ( 𝐵 ∩ 𝒫 𝑥 ) ↔ ∀ 𝑦 ∈ 𝑥 𝑦 ∈ ∪ ( 𝐵 ∩ 𝒫 𝑥 ) ) |
| 10 |
|
dfss3 |
⊢ ( 𝑥 ⊆ ∪ 𝐵 ↔ ∀ 𝑦 ∈ 𝑥 𝑦 ∈ ∪ 𝐵 ) |
| 11 |
|
elin |
⊢ ( 𝑧 ∈ ( 𝐵 ∩ 𝒫 𝑥 ) ↔ ( 𝑧 ∈ 𝐵 ∧ 𝑧 ∈ 𝒫 𝑥 ) ) |
| 12 |
11
|
anbi2i |
⊢ ( ( 𝑦 ∈ 𝑧 ∧ 𝑧 ∈ ( 𝐵 ∩ 𝒫 𝑥 ) ) ↔ ( 𝑦 ∈ 𝑧 ∧ ( 𝑧 ∈ 𝐵 ∧ 𝑧 ∈ 𝒫 𝑥 ) ) ) |
| 13 |
|
an12 |
⊢ ( ( 𝑦 ∈ 𝑧 ∧ ( 𝑧 ∈ 𝐵 ∧ 𝑧 ∈ 𝒫 𝑥 ) ) ↔ ( 𝑧 ∈ 𝐵 ∧ ( 𝑦 ∈ 𝑧 ∧ 𝑧 ∈ 𝒫 𝑥 ) ) ) |
| 14 |
12 13
|
bitri |
⊢ ( ( 𝑦 ∈ 𝑧 ∧ 𝑧 ∈ ( 𝐵 ∩ 𝒫 𝑥 ) ) ↔ ( 𝑧 ∈ 𝐵 ∧ ( 𝑦 ∈ 𝑧 ∧ 𝑧 ∈ 𝒫 𝑥 ) ) ) |
| 15 |
14
|
exbii |
⊢ ( ∃ 𝑧 ( 𝑦 ∈ 𝑧 ∧ 𝑧 ∈ ( 𝐵 ∩ 𝒫 𝑥 ) ) ↔ ∃ 𝑧 ( 𝑧 ∈ 𝐵 ∧ ( 𝑦 ∈ 𝑧 ∧ 𝑧 ∈ 𝒫 𝑥 ) ) ) |
| 16 |
|
eluni |
⊢ ( 𝑦 ∈ ∪ ( 𝐵 ∩ 𝒫 𝑥 ) ↔ ∃ 𝑧 ( 𝑦 ∈ 𝑧 ∧ 𝑧 ∈ ( 𝐵 ∩ 𝒫 𝑥 ) ) ) |
| 17 |
|
df-rex |
⊢ ( ∃ 𝑧 ∈ 𝐵 ( 𝑦 ∈ 𝑧 ∧ 𝑧 ∈ 𝒫 𝑥 ) ↔ ∃ 𝑧 ( 𝑧 ∈ 𝐵 ∧ ( 𝑦 ∈ 𝑧 ∧ 𝑧 ∈ 𝒫 𝑥 ) ) ) |
| 18 |
15 16 17
|
3bitr4i |
⊢ ( 𝑦 ∈ ∪ ( 𝐵 ∩ 𝒫 𝑥 ) ↔ ∃ 𝑧 ∈ 𝐵 ( 𝑦 ∈ 𝑧 ∧ 𝑧 ∈ 𝒫 𝑥 ) ) |
| 19 |
|
velpw |
⊢ ( 𝑧 ∈ 𝒫 𝑥 ↔ 𝑧 ⊆ 𝑥 ) |
| 20 |
19
|
anbi2i |
⊢ ( ( 𝑦 ∈ 𝑧 ∧ 𝑧 ∈ 𝒫 𝑥 ) ↔ ( 𝑦 ∈ 𝑧 ∧ 𝑧 ⊆ 𝑥 ) ) |
| 21 |
20
|
rexbii |
⊢ ( ∃ 𝑧 ∈ 𝐵 ( 𝑦 ∈ 𝑧 ∧ 𝑧 ∈ 𝒫 𝑥 ) ↔ ∃ 𝑧 ∈ 𝐵 ( 𝑦 ∈ 𝑧 ∧ 𝑧 ⊆ 𝑥 ) ) |
| 22 |
18 21
|
bitr2i |
⊢ ( ∃ 𝑧 ∈ 𝐵 ( 𝑦 ∈ 𝑧 ∧ 𝑧 ⊆ 𝑥 ) ↔ 𝑦 ∈ ∪ ( 𝐵 ∩ 𝒫 𝑥 ) ) |
| 23 |
22
|
ralbii |
⊢ ( ∀ 𝑦 ∈ 𝑥 ∃ 𝑧 ∈ 𝐵 ( 𝑦 ∈ 𝑧 ∧ 𝑧 ⊆ 𝑥 ) ↔ ∀ 𝑦 ∈ 𝑥 𝑦 ∈ ∪ ( 𝐵 ∩ 𝒫 𝑥 ) ) |
| 24 |
10 23
|
anbi12i |
⊢ ( ( 𝑥 ⊆ ∪ 𝐵 ∧ ∀ 𝑦 ∈ 𝑥 ∃ 𝑧 ∈ 𝐵 ( 𝑦 ∈ 𝑧 ∧ 𝑧 ⊆ 𝑥 ) ) ↔ ( ∀ 𝑦 ∈ 𝑥 𝑦 ∈ ∪ 𝐵 ∧ ∀ 𝑦 ∈ 𝑥 𝑦 ∈ ∪ ( 𝐵 ∩ 𝒫 𝑥 ) ) ) |
| 25 |
8 9 24
|
3bitr4i |
⊢ ( 𝑥 ⊆ ∪ ( 𝐵 ∩ 𝒫 𝑥 ) ↔ ( 𝑥 ⊆ ∪ 𝐵 ∧ ∀ 𝑦 ∈ 𝑥 ∃ 𝑧 ∈ 𝐵 ( 𝑦 ∈ 𝑧 ∧ 𝑧 ⊆ 𝑥 ) ) ) |
| 26 |
25
|
abbii |
⊢ { 𝑥 ∣ 𝑥 ⊆ ∪ ( 𝐵 ∩ 𝒫 𝑥 ) } = { 𝑥 ∣ ( 𝑥 ⊆ ∪ 𝐵 ∧ ∀ 𝑦 ∈ 𝑥 ∃ 𝑧 ∈ 𝐵 ( 𝑦 ∈ 𝑧 ∧ 𝑧 ⊆ 𝑥 ) ) } |
| 27 |
1 26
|
eqtrdi |
⊢ ( 𝐵 ∈ 𝑉 → ( topGen ‘ 𝐵 ) = { 𝑥 ∣ ( 𝑥 ⊆ ∪ 𝐵 ∧ ∀ 𝑦 ∈ 𝑥 ∃ 𝑧 ∈ 𝐵 ( 𝑦 ∈ 𝑧 ∧ 𝑧 ⊆ 𝑥 ) ) } ) |