Metamath Proof Explorer


Theorem tgval2

Description: Definition of a topology generated by a basis in Munkres p. 78. Later we show (in tgcl ) that ( topGenB ) is indeed a topology (on U. B , see unitg ). See also tgval and tgval3 . (Contributed by NM, 15-Jul-2006) (Revised by Mario Carneiro, 10-Jan-2015)

Ref Expression
Assertion tgval2 ( 𝐵𝑉 → ( topGen ‘ 𝐵 ) = { 𝑥 ∣ ( 𝑥 𝐵 ∧ ∀ 𝑦𝑥𝑧𝐵 ( 𝑦𝑧𝑧𝑥 ) ) } )

Proof

Step Hyp Ref Expression
1 tgval ( 𝐵𝑉 → ( topGen ‘ 𝐵 ) = { 𝑥𝑥 ( 𝐵 ∩ 𝒫 𝑥 ) } )
2 inss1 ( 𝐵 ∩ 𝒫 𝑥 ) ⊆ 𝐵
3 2 unissi ( 𝐵 ∩ 𝒫 𝑥 ) ⊆ 𝐵
4 3 sseli ( 𝑦 ( 𝐵 ∩ 𝒫 𝑥 ) → 𝑦 𝐵 )
5 4 pm4.71ri ( 𝑦 ( 𝐵 ∩ 𝒫 𝑥 ) ↔ ( 𝑦 𝐵𝑦 ( 𝐵 ∩ 𝒫 𝑥 ) ) )
6 5 ralbii ( ∀ 𝑦𝑥 𝑦 ( 𝐵 ∩ 𝒫 𝑥 ) ↔ ∀ 𝑦𝑥 ( 𝑦 𝐵𝑦 ( 𝐵 ∩ 𝒫 𝑥 ) ) )
7 r19.26 ( ∀ 𝑦𝑥 ( 𝑦 𝐵𝑦 ( 𝐵 ∩ 𝒫 𝑥 ) ) ↔ ( ∀ 𝑦𝑥 𝑦 𝐵 ∧ ∀ 𝑦𝑥 𝑦 ( 𝐵 ∩ 𝒫 𝑥 ) ) )
8 6 7 bitri ( ∀ 𝑦𝑥 𝑦 ( 𝐵 ∩ 𝒫 𝑥 ) ↔ ( ∀ 𝑦𝑥 𝑦 𝐵 ∧ ∀ 𝑦𝑥 𝑦 ( 𝐵 ∩ 𝒫 𝑥 ) ) )
9 dfss3 ( 𝑥 ( 𝐵 ∩ 𝒫 𝑥 ) ↔ ∀ 𝑦𝑥 𝑦 ( 𝐵 ∩ 𝒫 𝑥 ) )
10 dfss3 ( 𝑥 𝐵 ↔ ∀ 𝑦𝑥 𝑦 𝐵 )
11 elin ( 𝑧 ∈ ( 𝐵 ∩ 𝒫 𝑥 ) ↔ ( 𝑧𝐵𝑧 ∈ 𝒫 𝑥 ) )
12 11 anbi2i ( ( 𝑦𝑧𝑧 ∈ ( 𝐵 ∩ 𝒫 𝑥 ) ) ↔ ( 𝑦𝑧 ∧ ( 𝑧𝐵𝑧 ∈ 𝒫 𝑥 ) ) )
13 an12 ( ( 𝑦𝑧 ∧ ( 𝑧𝐵𝑧 ∈ 𝒫 𝑥 ) ) ↔ ( 𝑧𝐵 ∧ ( 𝑦𝑧𝑧 ∈ 𝒫 𝑥 ) ) )
14 12 13 bitri ( ( 𝑦𝑧𝑧 ∈ ( 𝐵 ∩ 𝒫 𝑥 ) ) ↔ ( 𝑧𝐵 ∧ ( 𝑦𝑧𝑧 ∈ 𝒫 𝑥 ) ) )
15 14 exbii ( ∃ 𝑧 ( 𝑦𝑧𝑧 ∈ ( 𝐵 ∩ 𝒫 𝑥 ) ) ↔ ∃ 𝑧 ( 𝑧𝐵 ∧ ( 𝑦𝑧𝑧 ∈ 𝒫 𝑥 ) ) )
16 eluni ( 𝑦 ( 𝐵 ∩ 𝒫 𝑥 ) ↔ ∃ 𝑧 ( 𝑦𝑧𝑧 ∈ ( 𝐵 ∩ 𝒫 𝑥 ) ) )
17 df-rex ( ∃ 𝑧𝐵 ( 𝑦𝑧𝑧 ∈ 𝒫 𝑥 ) ↔ ∃ 𝑧 ( 𝑧𝐵 ∧ ( 𝑦𝑧𝑧 ∈ 𝒫 𝑥 ) ) )
18 15 16 17 3bitr4i ( 𝑦 ( 𝐵 ∩ 𝒫 𝑥 ) ↔ ∃ 𝑧𝐵 ( 𝑦𝑧𝑧 ∈ 𝒫 𝑥 ) )
19 velpw ( 𝑧 ∈ 𝒫 𝑥𝑧𝑥 )
20 19 anbi2i ( ( 𝑦𝑧𝑧 ∈ 𝒫 𝑥 ) ↔ ( 𝑦𝑧𝑧𝑥 ) )
21 20 rexbii ( ∃ 𝑧𝐵 ( 𝑦𝑧𝑧 ∈ 𝒫 𝑥 ) ↔ ∃ 𝑧𝐵 ( 𝑦𝑧𝑧𝑥 ) )
22 18 21 bitr2i ( ∃ 𝑧𝐵 ( 𝑦𝑧𝑧𝑥 ) ↔ 𝑦 ( 𝐵 ∩ 𝒫 𝑥 ) )
23 22 ralbii ( ∀ 𝑦𝑥𝑧𝐵 ( 𝑦𝑧𝑧𝑥 ) ↔ ∀ 𝑦𝑥 𝑦 ( 𝐵 ∩ 𝒫 𝑥 ) )
24 10 23 anbi12i ( ( 𝑥 𝐵 ∧ ∀ 𝑦𝑥𝑧𝐵 ( 𝑦𝑧𝑧𝑥 ) ) ↔ ( ∀ 𝑦𝑥 𝑦 𝐵 ∧ ∀ 𝑦𝑥 𝑦 ( 𝐵 ∩ 𝒫 𝑥 ) ) )
25 8 9 24 3bitr4i ( 𝑥 ( 𝐵 ∩ 𝒫 𝑥 ) ↔ ( 𝑥 𝐵 ∧ ∀ 𝑦𝑥𝑧𝐵 ( 𝑦𝑧𝑧𝑥 ) ) )
26 25 abbii { 𝑥𝑥 ( 𝐵 ∩ 𝒫 𝑥 ) } = { 𝑥 ∣ ( 𝑥 𝐵 ∧ ∀ 𝑦𝑥𝑧𝐵 ( 𝑦𝑧𝑧𝑥 ) ) }
27 1 26 eqtrdi ( 𝐵𝑉 → ( topGen ‘ 𝐵 ) = { 𝑥 ∣ ( 𝑥 𝐵 ∧ ∀ 𝑦𝑥𝑧𝐵 ( 𝑦𝑧𝑧𝑥 ) ) } )