Metamath Proof Explorer


Theorem tgval3

Description: Alternate expression for the topology generated by a basis. Lemma 2.1 of Munkres p. 80. See also tgval and tgval2 . (Contributed by NM, 17-Jul-2006) (Revised by Mario Carneiro, 30-Aug-2015)

Ref Expression
Assertion tgval3 ( 𝐵𝑉 → ( topGen ‘ 𝐵 ) = { 𝑥 ∣ ∃ 𝑦 ( 𝑦𝐵𝑥 = 𝑦 ) } )

Proof

Step Hyp Ref Expression
1 eltg3 ( 𝐵𝑉 → ( 𝑥 ∈ ( topGen ‘ 𝐵 ) ↔ ∃ 𝑦 ( 𝑦𝐵𝑥 = 𝑦 ) ) )
2 1 abbi2dv ( 𝐵𝑉 → ( topGen ‘ 𝐵 ) = { 𝑥 ∣ ∃ 𝑦 ( 𝑦𝐵𝑥 = 𝑦 ) } )