Description: A thin category is a category. (Contributed by Zhi Wang, 17-Sep-2024)
Ref | Expression | ||
---|---|---|---|
Assertion | thincc | ⊢ ( 𝐶 ∈ ThinCat → 𝐶 ∈ Cat ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid | ⊢ ( Base ‘ 𝐶 ) = ( Base ‘ 𝐶 ) | |
2 | eqid | ⊢ ( Hom ‘ 𝐶 ) = ( Hom ‘ 𝐶 ) | |
3 | 1 2 | isthinc | ⊢ ( 𝐶 ∈ ThinCat ↔ ( 𝐶 ∈ Cat ∧ ∀ 𝑥 ∈ ( Base ‘ 𝐶 ) ∀ 𝑦 ∈ ( Base ‘ 𝐶 ) ∃* 𝑓 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ) ) |
4 | 3 | simplbi | ⊢ ( 𝐶 ∈ ThinCat → 𝐶 ∈ Cat ) |