Description: A thin category is a category. (Contributed by Zhi Wang, 17-Sep-2024)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | thincc | ⊢ ( 𝐶 ∈ ThinCat → 𝐶 ∈ Cat ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | eqid | ⊢ ( Base ‘ 𝐶 ) = ( Base ‘ 𝐶 ) | |
| 2 | eqid | ⊢ ( Hom ‘ 𝐶 ) = ( Hom ‘ 𝐶 ) | |
| 3 | 1 2 | isthinc | ⊢ ( 𝐶 ∈ ThinCat ↔ ( 𝐶 ∈ Cat ∧ ∀ 𝑥 ∈ ( Base ‘ 𝐶 ) ∀ 𝑦 ∈ ( Base ‘ 𝐶 ) ∃* 𝑓 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ) ) | 
| 4 | 3 | simplbi | ⊢ ( 𝐶 ∈ ThinCat → 𝐶 ∈ Cat ) |