Metamath Proof Explorer


Theorem thincc

Description: A thin category is a category. (Contributed by Zhi Wang, 17-Sep-2024)

Ref Expression
Assertion thincc ( 𝐶 ∈ ThinCat → 𝐶 ∈ Cat )

Proof

Step Hyp Ref Expression
1 eqid ( Base ‘ 𝐶 ) = ( Base ‘ 𝐶 )
2 eqid ( Hom ‘ 𝐶 ) = ( Hom ‘ 𝐶 )
3 1 2 isthinc ( 𝐶 ∈ ThinCat ↔ ( 𝐶 ∈ Cat ∧ ∀ 𝑥 ∈ ( Base ‘ 𝐶 ) ∀ 𝑦 ∈ ( Base ‘ 𝐶 ) ∃* 𝑓 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ) )
4 3 simplbi ( 𝐶 ∈ ThinCat → 𝐶 ∈ Cat )