| Step | Hyp | Ref | Expression | 
						
							| 1 |  | thincsect.c | ⊢ ( 𝜑  →  𝐶  ∈  ThinCat ) | 
						
							| 2 |  | thincsect.b | ⊢ 𝐵  =  ( Base ‘ 𝐶 ) | 
						
							| 3 |  | thincsect.x | ⊢ ( 𝜑  →  𝑋  ∈  𝐵 ) | 
						
							| 4 |  | thincsect.y | ⊢ ( 𝜑  →  𝑌  ∈  𝐵 ) | 
						
							| 5 |  | thinciso.h | ⊢ 𝐻  =  ( Hom  ‘ 𝐶 ) | 
						
							| 6 |  | eqid | ⊢ ( Iso ‘ 𝐶 )  =  ( Iso ‘ 𝐶 ) | 
						
							| 7 | 1 | thinccd | ⊢ ( 𝜑  →  𝐶  ∈  Cat ) | 
						
							| 8 | 2 5 6 7 3 4 | isohom | ⊢ ( 𝜑  →  ( 𝑋 ( Iso ‘ 𝐶 ) 𝑌 )  ⊆  ( 𝑋 𝐻 𝑌 ) ) | 
						
							| 9 | 8 | sselda | ⊢ ( ( 𝜑  ∧  𝑓  ∈  ( 𝑋 ( Iso ‘ 𝐶 ) 𝑌 ) )  →  𝑓  ∈  ( 𝑋 𝐻 𝑌 ) ) | 
						
							| 10 | 1 | adantr | ⊢ ( ( 𝜑  ∧  𝑓  ∈  ( 𝑋 𝐻 𝑌 ) )  →  𝐶  ∈  ThinCat ) | 
						
							| 11 | 3 | adantr | ⊢ ( ( 𝜑  ∧  𝑓  ∈  ( 𝑋 𝐻 𝑌 ) )  →  𝑋  ∈  𝐵 ) | 
						
							| 12 | 4 | adantr | ⊢ ( ( 𝜑  ∧  𝑓  ∈  ( 𝑋 𝐻 𝑌 ) )  →  𝑌  ∈  𝐵 ) | 
						
							| 13 |  | simpr | ⊢ ( ( 𝜑  ∧  𝑓  ∈  ( 𝑋 𝐻 𝑌 ) )  →  𝑓  ∈  ( 𝑋 𝐻 𝑌 ) ) | 
						
							| 14 | 10 2 11 12 5 6 13 | thinciso | ⊢ ( ( 𝜑  ∧  𝑓  ∈  ( 𝑋 𝐻 𝑌 ) )  →  ( 𝑓  ∈  ( 𝑋 ( Iso ‘ 𝐶 ) 𝑌 )  ↔  ( 𝑌 𝐻 𝑋 )  ≠  ∅ ) ) | 
						
							| 15 | 9 14 | biadanid | ⊢ ( 𝜑  →  ( 𝑓  ∈  ( 𝑋 ( Iso ‘ 𝐶 ) 𝑌 )  ↔  ( 𝑓  ∈  ( 𝑋 𝐻 𝑌 )  ∧  ( 𝑌 𝐻 𝑋 )  ≠  ∅ ) ) ) | 
						
							| 16 | 15 | exbidv | ⊢ ( 𝜑  →  ( ∃ 𝑓 𝑓  ∈  ( 𝑋 ( Iso ‘ 𝐶 ) 𝑌 )  ↔  ∃ 𝑓 ( 𝑓  ∈  ( 𝑋 𝐻 𝑌 )  ∧  ( 𝑌 𝐻 𝑋 )  ≠  ∅ ) ) ) | 
						
							| 17 | 6 2 7 3 4 | cic | ⊢ ( 𝜑  →  ( 𝑋 (  ≃𝑐  ‘ 𝐶 ) 𝑌  ↔  ∃ 𝑓 𝑓  ∈  ( 𝑋 ( Iso ‘ 𝐶 ) 𝑌 ) ) ) | 
						
							| 18 |  | n0 | ⊢ ( ( 𝑋 𝐻 𝑌 )  ≠  ∅  ↔  ∃ 𝑓 𝑓  ∈  ( 𝑋 𝐻 𝑌 ) ) | 
						
							| 19 | 18 | anbi1i | ⊢ ( ( ( 𝑋 𝐻 𝑌 )  ≠  ∅  ∧  ( 𝑌 𝐻 𝑋 )  ≠  ∅ )  ↔  ( ∃ 𝑓 𝑓  ∈  ( 𝑋 𝐻 𝑌 )  ∧  ( 𝑌 𝐻 𝑋 )  ≠  ∅ ) ) | 
						
							| 20 |  | 19.41v | ⊢ ( ∃ 𝑓 ( 𝑓  ∈  ( 𝑋 𝐻 𝑌 )  ∧  ( 𝑌 𝐻 𝑋 )  ≠  ∅ )  ↔  ( ∃ 𝑓 𝑓  ∈  ( 𝑋 𝐻 𝑌 )  ∧  ( 𝑌 𝐻 𝑋 )  ≠  ∅ ) ) | 
						
							| 21 | 19 20 | bitr4i | ⊢ ( ( ( 𝑋 𝐻 𝑌 )  ≠  ∅  ∧  ( 𝑌 𝐻 𝑋 )  ≠  ∅ )  ↔  ∃ 𝑓 ( 𝑓  ∈  ( 𝑋 𝐻 𝑌 )  ∧  ( 𝑌 𝐻 𝑋 )  ≠  ∅ ) ) | 
						
							| 22 | 21 | a1i | ⊢ ( 𝜑  →  ( ( ( 𝑋 𝐻 𝑌 )  ≠  ∅  ∧  ( 𝑌 𝐻 𝑋 )  ≠  ∅ )  ↔  ∃ 𝑓 ( 𝑓  ∈  ( 𝑋 𝐻 𝑌 )  ∧  ( 𝑌 𝐻 𝑋 )  ≠  ∅ ) ) ) | 
						
							| 23 | 16 17 22 | 3bitr4d | ⊢ ( 𝜑  →  ( 𝑋 (  ≃𝑐  ‘ 𝐶 ) 𝑌  ↔  ( ( 𝑋 𝐻 𝑌 )  ≠  ∅  ∧  ( 𝑌 𝐻 𝑋 )  ≠  ∅ ) ) ) |