Step |
Hyp |
Ref |
Expression |
1 |
|
thincsect.c |
⊢ ( 𝜑 → 𝐶 ∈ ThinCat ) |
2 |
|
thincsect.b |
⊢ 𝐵 = ( Base ‘ 𝐶 ) |
3 |
|
thincsect.x |
⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) |
4 |
|
thincsect.y |
⊢ ( 𝜑 → 𝑌 ∈ 𝐵 ) |
5 |
|
thinciso.h |
⊢ 𝐻 = ( Hom ‘ 𝐶 ) |
6 |
|
eqid |
⊢ ( Iso ‘ 𝐶 ) = ( Iso ‘ 𝐶 ) |
7 |
1
|
thinccd |
⊢ ( 𝜑 → 𝐶 ∈ Cat ) |
8 |
2 5 6 7 3 4
|
isohom |
⊢ ( 𝜑 → ( 𝑋 ( Iso ‘ 𝐶 ) 𝑌 ) ⊆ ( 𝑋 𝐻 𝑌 ) ) |
9 |
8
|
sselda |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ ( 𝑋 ( Iso ‘ 𝐶 ) 𝑌 ) ) → 𝑓 ∈ ( 𝑋 𝐻 𝑌 ) ) |
10 |
1
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ ( 𝑋 𝐻 𝑌 ) ) → 𝐶 ∈ ThinCat ) |
11 |
3
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ ( 𝑋 𝐻 𝑌 ) ) → 𝑋 ∈ 𝐵 ) |
12 |
4
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ ( 𝑋 𝐻 𝑌 ) ) → 𝑌 ∈ 𝐵 ) |
13 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ ( 𝑋 𝐻 𝑌 ) ) → 𝑓 ∈ ( 𝑋 𝐻 𝑌 ) ) |
14 |
10 2 11 12 5 6 13
|
thinciso |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ ( 𝑋 𝐻 𝑌 ) ) → ( 𝑓 ∈ ( 𝑋 ( Iso ‘ 𝐶 ) 𝑌 ) ↔ ( 𝑌 𝐻 𝑋 ) ≠ ∅ ) ) |
15 |
9 14
|
biadanid |
⊢ ( 𝜑 → ( 𝑓 ∈ ( 𝑋 ( Iso ‘ 𝐶 ) 𝑌 ) ↔ ( 𝑓 ∈ ( 𝑋 𝐻 𝑌 ) ∧ ( 𝑌 𝐻 𝑋 ) ≠ ∅ ) ) ) |
16 |
15
|
exbidv |
⊢ ( 𝜑 → ( ∃ 𝑓 𝑓 ∈ ( 𝑋 ( Iso ‘ 𝐶 ) 𝑌 ) ↔ ∃ 𝑓 ( 𝑓 ∈ ( 𝑋 𝐻 𝑌 ) ∧ ( 𝑌 𝐻 𝑋 ) ≠ ∅ ) ) ) |
17 |
6 2 7 3 4
|
cic |
⊢ ( 𝜑 → ( 𝑋 ( ≃𝑐 ‘ 𝐶 ) 𝑌 ↔ ∃ 𝑓 𝑓 ∈ ( 𝑋 ( Iso ‘ 𝐶 ) 𝑌 ) ) ) |
18 |
|
n0 |
⊢ ( ( 𝑋 𝐻 𝑌 ) ≠ ∅ ↔ ∃ 𝑓 𝑓 ∈ ( 𝑋 𝐻 𝑌 ) ) |
19 |
18
|
anbi1i |
⊢ ( ( ( 𝑋 𝐻 𝑌 ) ≠ ∅ ∧ ( 𝑌 𝐻 𝑋 ) ≠ ∅ ) ↔ ( ∃ 𝑓 𝑓 ∈ ( 𝑋 𝐻 𝑌 ) ∧ ( 𝑌 𝐻 𝑋 ) ≠ ∅ ) ) |
20 |
|
19.41v |
⊢ ( ∃ 𝑓 ( 𝑓 ∈ ( 𝑋 𝐻 𝑌 ) ∧ ( 𝑌 𝐻 𝑋 ) ≠ ∅ ) ↔ ( ∃ 𝑓 𝑓 ∈ ( 𝑋 𝐻 𝑌 ) ∧ ( 𝑌 𝐻 𝑋 ) ≠ ∅ ) ) |
21 |
19 20
|
bitr4i |
⊢ ( ( ( 𝑋 𝐻 𝑌 ) ≠ ∅ ∧ ( 𝑌 𝐻 𝑋 ) ≠ ∅ ) ↔ ∃ 𝑓 ( 𝑓 ∈ ( 𝑋 𝐻 𝑌 ) ∧ ( 𝑌 𝐻 𝑋 ) ≠ ∅ ) ) |
22 |
21
|
a1i |
⊢ ( 𝜑 → ( ( ( 𝑋 𝐻 𝑌 ) ≠ ∅ ∧ ( 𝑌 𝐻 𝑋 ) ≠ ∅ ) ↔ ∃ 𝑓 ( 𝑓 ∈ ( 𝑋 𝐻 𝑌 ) ∧ ( 𝑌 𝐻 𝑋 ) ≠ ∅ ) ) ) |
23 |
16 17 22
|
3bitr4d |
⊢ ( 𝜑 → ( 𝑋 ( ≃𝑐 ‘ 𝐶 ) 𝑌 ↔ ( ( 𝑋 𝐻 𝑌 ) ≠ ∅ ∧ ( 𝑌 𝐻 𝑋 ) ≠ ∅ ) ) ) |