Metamath Proof Explorer


Theorem thincfth

Description: A functor from a thin category is faithful. (Contributed by Zhi Wang, 1-Oct-2024)

Ref Expression
Hypotheses thincfth.c ( 𝜑𝐶 ∈ ThinCat )
thincfth.f ( 𝜑𝐹 ( 𝐶 Func 𝐷 ) 𝐺 )
Assertion thincfth ( 𝜑𝐹 ( 𝐶 Faith 𝐷 ) 𝐺 )

Proof

Step Hyp Ref Expression
1 thincfth.c ( 𝜑𝐶 ∈ ThinCat )
2 thincfth.f ( 𝜑𝐹 ( 𝐶 Func 𝐷 ) 𝐺 )
3 1 adantr ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) ) → 𝐶 ∈ ThinCat )
4 simprl ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) ) → 𝑥 ∈ ( Base ‘ 𝐶 ) )
5 simprr ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) ) → 𝑦 ∈ ( Base ‘ 𝐶 ) )
6 eqid ( Base ‘ 𝐶 ) = ( Base ‘ 𝐶 )
7 eqid ( Hom ‘ 𝐶 ) = ( Hom ‘ 𝐶 )
8 3 4 5 6 7 thincmo ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) ) → ∃* 𝑓 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) )
9 eqid ( Hom ‘ 𝐷 ) = ( Hom ‘ 𝐷 )
10 2 adantr ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) ) → 𝐹 ( 𝐶 Func 𝐷 ) 𝐺 )
11 6 7 9 10 4 5 funcf2 ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) ) → ( 𝑥 𝐺 𝑦 ) : ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ⟶ ( ( 𝐹𝑥 ) ( Hom ‘ 𝐷 ) ( 𝐹𝑦 ) ) )
12 f1mo ( ( ∃* 𝑓 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ∧ ( 𝑥 𝐺 𝑦 ) : ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ⟶ ( ( 𝐹𝑥 ) ( Hom ‘ 𝐷 ) ( 𝐹𝑦 ) ) ) → ( 𝑥 𝐺 𝑦 ) : ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) –1-1→ ( ( 𝐹𝑥 ) ( Hom ‘ 𝐷 ) ( 𝐹𝑦 ) ) )
13 8 11 12 syl2anc ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) ) → ( 𝑥 𝐺 𝑦 ) : ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) –1-1→ ( ( 𝐹𝑥 ) ( Hom ‘ 𝐷 ) ( 𝐹𝑦 ) ) )
14 13 ralrimivva ( 𝜑 → ∀ 𝑥 ∈ ( Base ‘ 𝐶 ) ∀ 𝑦 ∈ ( Base ‘ 𝐶 ) ( 𝑥 𝐺 𝑦 ) : ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) –1-1→ ( ( 𝐹𝑥 ) ( Hom ‘ 𝐷 ) ( 𝐹𝑦 ) ) )
15 6 7 9 isfth2 ( 𝐹 ( 𝐶 Faith 𝐷 ) 𝐺 ↔ ( 𝐹 ( 𝐶 Func 𝐷 ) 𝐺 ∧ ∀ 𝑥 ∈ ( Base ‘ 𝐶 ) ∀ 𝑦 ∈ ( Base ‘ 𝐶 ) ( 𝑥 𝐺 𝑦 ) : ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) –1-1→ ( ( 𝐹𝑥 ) ( Hom ‘ 𝐷 ) ( 𝐹𝑦 ) ) ) )
16 2 14 15 sylanbrc ( 𝜑𝐹 ( 𝐶 Faith 𝐷 ) 𝐺 )