| Step | Hyp | Ref | Expression | 
						
							| 1 |  | thinchom.x | ⊢ ( 𝜑  →  𝑋  ∈  𝐵 ) | 
						
							| 2 |  | thinchom.y | ⊢ ( 𝜑  →  𝑌  ∈  𝐵 ) | 
						
							| 3 |  | thinchom.f | ⊢ ( 𝜑  →  𝐹  ∈  ( 𝑋 𝐻 𝑌 ) ) | 
						
							| 4 |  | thinchom.b | ⊢ 𝐵  =  ( Base ‘ 𝐶 ) | 
						
							| 5 |  | thinchom.h | ⊢ 𝐻  =  ( Hom  ‘ 𝐶 ) | 
						
							| 6 |  | thinchom.c | ⊢ ( 𝜑  →  𝐶  ∈  ThinCat ) | 
						
							| 7 | 1 | adantr | ⊢ ( ( 𝜑  ∧  𝑔  ∈  ( 𝑋 𝐻 𝑌 ) )  →  𝑋  ∈  𝐵 ) | 
						
							| 8 | 2 | adantr | ⊢ ( ( 𝜑  ∧  𝑔  ∈  ( 𝑋 𝐻 𝑌 ) )  →  𝑌  ∈  𝐵 ) | 
						
							| 9 |  | simpr | ⊢ ( ( 𝜑  ∧  𝑔  ∈  ( 𝑋 𝐻 𝑌 ) )  →  𝑔  ∈  ( 𝑋 𝐻 𝑌 ) ) | 
						
							| 10 | 3 | adantr | ⊢ ( ( 𝜑  ∧  𝑔  ∈  ( 𝑋 𝐻 𝑌 ) )  →  𝐹  ∈  ( 𝑋 𝐻 𝑌 ) ) | 
						
							| 11 | 6 | adantr | ⊢ ( ( 𝜑  ∧  𝑔  ∈  ( 𝑋 𝐻 𝑌 ) )  →  𝐶  ∈  ThinCat ) | 
						
							| 12 | 7 8 9 10 4 5 11 | thincmo2 | ⊢ ( ( 𝜑  ∧  𝑔  ∈  ( 𝑋 𝐻 𝑌 ) )  →  𝑔  =  𝐹 ) | 
						
							| 13 | 12 3 | eqsnd | ⊢ ( 𝜑  →  ( 𝑋 𝐻 𝑌 )  =  { 𝐹 } ) |