Metamath Proof Explorer


Theorem thincid

Description: In a thin category, a morphism from an object to itself is an identity morphism. (Contributed by Zhi Wang, 24-Sep-2024)

Ref Expression
Hypotheses thincid.c ( 𝜑𝐶 ∈ ThinCat )
thincid.b 𝐵 = ( Base ‘ 𝐶 )
thincid.h 𝐻 = ( Hom ‘ 𝐶 )
thincid.x ( 𝜑𝑋𝐵 )
thincid.i 1 = ( Id ‘ 𝐶 )
thincid.f ( 𝜑𝐹 ∈ ( 𝑋 𝐻 𝑋 ) )
Assertion thincid ( 𝜑𝐹 = ( 1𝑋 ) )

Proof

Step Hyp Ref Expression
1 thincid.c ( 𝜑𝐶 ∈ ThinCat )
2 thincid.b 𝐵 = ( Base ‘ 𝐶 )
3 thincid.h 𝐻 = ( Hom ‘ 𝐶 )
4 thincid.x ( 𝜑𝑋𝐵 )
5 thincid.i 1 = ( Id ‘ 𝐶 )
6 thincid.f ( 𝜑𝐹 ∈ ( 𝑋 𝐻 𝑋 ) )
7 1 thinccd ( 𝜑𝐶 ∈ Cat )
8 2 3 5 7 4 catidcl ( 𝜑 → ( 1𝑋 ) ∈ ( 𝑋 𝐻 𝑋 ) )
9 4 4 6 8 2 3 1 thincmo2 ( 𝜑𝐹 = ( 1𝑋 ) )