| Step | Hyp | Ref | Expression | 
						
							| 1 |  | thincsect.c | ⊢ ( 𝜑  →  𝐶  ∈  ThinCat ) | 
						
							| 2 |  | thincsect.b | ⊢ 𝐵  =  ( Base ‘ 𝐶 ) | 
						
							| 3 |  | thincsect.x | ⊢ ( 𝜑  →  𝑋  ∈  𝐵 ) | 
						
							| 4 |  | thincsect.y | ⊢ ( 𝜑  →  𝑌  ∈  𝐵 ) | 
						
							| 5 |  | thincsect.s | ⊢ 𝑆  =  ( Sect ‘ 𝐶 ) | 
						
							| 6 |  | thincinv.n | ⊢ 𝑁  =  ( Inv ‘ 𝐶 ) | 
						
							| 7 | 1 | thinccd | ⊢ ( 𝜑  →  𝐶  ∈  Cat ) | 
						
							| 8 | 2 6 7 3 4 5 | isinv | ⊢ ( 𝜑  →  ( 𝐹 ( 𝑋 𝑁 𝑌 ) 𝐺  ↔  ( 𝐹 ( 𝑋 𝑆 𝑌 ) 𝐺  ∧  𝐺 ( 𝑌 𝑆 𝑋 ) 𝐹 ) ) ) | 
						
							| 9 | 1 2 3 4 5 | thincsect2 | ⊢ ( 𝜑  →  ( 𝐹 ( 𝑋 𝑆 𝑌 ) 𝐺  ↔  𝐺 ( 𝑌 𝑆 𝑋 ) 𝐹 ) ) | 
						
							| 10 | 9 | biimpa | ⊢ ( ( 𝜑  ∧  𝐹 ( 𝑋 𝑆 𝑌 ) 𝐺 )  →  𝐺 ( 𝑌 𝑆 𝑋 ) 𝐹 ) | 
						
							| 11 | 8 10 | mpbiran3d | ⊢ ( 𝜑  →  ( 𝐹 ( 𝑋 𝑁 𝑌 ) 𝐺  ↔  𝐹 ( 𝑋 𝑆 𝑌 ) 𝐺 ) ) |