Step |
Hyp |
Ref |
Expression |
1 |
|
thincsect.c |
⊢ ( 𝜑 → 𝐶 ∈ ThinCat ) |
2 |
|
thincsect.b |
⊢ 𝐵 = ( Base ‘ 𝐶 ) |
3 |
|
thincsect.x |
⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) |
4 |
|
thincsect.y |
⊢ ( 𝜑 → 𝑌 ∈ 𝐵 ) |
5 |
|
thincsect.s |
⊢ 𝑆 = ( Sect ‘ 𝐶 ) |
6 |
|
thincinv.n |
⊢ 𝑁 = ( Inv ‘ 𝐶 ) |
7 |
1
|
thinccd |
⊢ ( 𝜑 → 𝐶 ∈ Cat ) |
8 |
2 6 7 3 4 5
|
isinv |
⊢ ( 𝜑 → ( 𝐹 ( 𝑋 𝑁 𝑌 ) 𝐺 ↔ ( 𝐹 ( 𝑋 𝑆 𝑌 ) 𝐺 ∧ 𝐺 ( 𝑌 𝑆 𝑋 ) 𝐹 ) ) ) |
9 |
1 2 3 4 5
|
thincsect2 |
⊢ ( 𝜑 → ( 𝐹 ( 𝑋 𝑆 𝑌 ) 𝐺 ↔ 𝐺 ( 𝑌 𝑆 𝑋 ) 𝐹 ) ) |
10 |
9
|
biimpa |
⊢ ( ( 𝜑 ∧ 𝐹 ( 𝑋 𝑆 𝑌 ) 𝐺 ) → 𝐺 ( 𝑌 𝑆 𝑋 ) 𝐹 ) |
11 |
8 10
|
mpbiran3d |
⊢ ( 𝜑 → ( 𝐹 ( 𝑋 𝑁 𝑌 ) 𝐺 ↔ 𝐹 ( 𝑋 𝑆 𝑌 ) 𝐺 ) ) |