Step |
Hyp |
Ref |
Expression |
1 |
|
thincsect.c |
⊢ ( 𝜑 → 𝐶 ∈ ThinCat ) |
2 |
|
thincsect.b |
⊢ 𝐵 = ( Base ‘ 𝐶 ) |
3 |
|
thincsect.x |
⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) |
4 |
|
thincsect.y |
⊢ ( 𝜑 → 𝑌 ∈ 𝐵 ) |
5 |
|
thinciso.h |
⊢ 𝐻 = ( Hom ‘ 𝐶 ) |
6 |
|
thinciso.i |
⊢ 𝐼 = ( Iso ‘ 𝐶 ) |
7 |
|
thinciso.f |
⊢ ( 𝜑 → 𝐹 ∈ ( 𝑋 𝐻 𝑌 ) ) |
8 |
|
eqid |
⊢ ( Sect ‘ 𝐶 ) = ( Sect ‘ 𝐶 ) |
9 |
1
|
thinccd |
⊢ ( 𝜑 → 𝐶 ∈ Cat ) |
10 |
2 5 6 8 9 3 4 7
|
dfiso3 |
⊢ ( 𝜑 → ( 𝐹 ∈ ( 𝑋 𝐼 𝑌 ) ↔ ∃ 𝑔 ∈ ( 𝑌 𝐻 𝑋 ) ( 𝑔 ( 𝑌 ( Sect ‘ 𝐶 ) 𝑋 ) 𝐹 ∧ 𝐹 ( 𝑋 ( Sect ‘ 𝐶 ) 𝑌 ) 𝑔 ) ) ) |
11 |
|
simprl |
⊢ ( ( ( 𝜑 ∧ ( 𝑌 𝐻 𝑋 ) ≠ ∅ ) ∧ ( 𝑔 ∈ ( 𝑌 𝐻 𝑋 ) ∧ ⊤ ) ) → 𝑔 ∈ ( 𝑌 𝐻 𝑋 ) ) |
12 |
7
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑌 𝐻 𝑋 ) ≠ ∅ ) ∧ ( 𝑔 ∈ ( 𝑌 𝐻 𝑋 ) ∧ ⊤ ) ) → 𝐹 ∈ ( 𝑋 𝐻 𝑌 ) ) |
13 |
1
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑌 𝐻 𝑋 ) ≠ ∅ ) ∧ ( 𝑔 ∈ ( 𝑌 𝐻 𝑋 ) ∧ ⊤ ) ) → 𝐶 ∈ ThinCat ) |
14 |
4
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑌 𝐻 𝑋 ) ≠ ∅ ) ∧ ( 𝑔 ∈ ( 𝑌 𝐻 𝑋 ) ∧ ⊤ ) ) → 𝑌 ∈ 𝐵 ) |
15 |
3
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑌 𝐻 𝑋 ) ≠ ∅ ) ∧ ( 𝑔 ∈ ( 𝑌 𝐻 𝑋 ) ∧ ⊤ ) ) → 𝑋 ∈ 𝐵 ) |
16 |
13 2 14 15 8 5
|
thincsect |
⊢ ( ( ( 𝜑 ∧ ( 𝑌 𝐻 𝑋 ) ≠ ∅ ) ∧ ( 𝑔 ∈ ( 𝑌 𝐻 𝑋 ) ∧ ⊤ ) ) → ( 𝑔 ( 𝑌 ( Sect ‘ 𝐶 ) 𝑋 ) 𝐹 ↔ ( 𝑔 ∈ ( 𝑌 𝐻 𝑋 ) ∧ 𝐹 ∈ ( 𝑋 𝐻 𝑌 ) ) ) ) |
17 |
11 12 16
|
mpbir2and |
⊢ ( ( ( 𝜑 ∧ ( 𝑌 𝐻 𝑋 ) ≠ ∅ ) ∧ ( 𝑔 ∈ ( 𝑌 𝐻 𝑋 ) ∧ ⊤ ) ) → 𝑔 ( 𝑌 ( Sect ‘ 𝐶 ) 𝑋 ) 𝐹 ) |
18 |
13 2 15 14 8 5
|
thincsect |
⊢ ( ( ( 𝜑 ∧ ( 𝑌 𝐻 𝑋 ) ≠ ∅ ) ∧ ( 𝑔 ∈ ( 𝑌 𝐻 𝑋 ) ∧ ⊤ ) ) → ( 𝐹 ( 𝑋 ( Sect ‘ 𝐶 ) 𝑌 ) 𝑔 ↔ ( 𝐹 ∈ ( 𝑋 𝐻 𝑌 ) ∧ 𝑔 ∈ ( 𝑌 𝐻 𝑋 ) ) ) ) |
19 |
12 11 18
|
mpbir2and |
⊢ ( ( ( 𝜑 ∧ ( 𝑌 𝐻 𝑋 ) ≠ ∅ ) ∧ ( 𝑔 ∈ ( 𝑌 𝐻 𝑋 ) ∧ ⊤ ) ) → 𝐹 ( 𝑋 ( Sect ‘ 𝐶 ) 𝑌 ) 𝑔 ) |
20 |
17 19
|
jca |
⊢ ( ( ( 𝜑 ∧ ( 𝑌 𝐻 𝑋 ) ≠ ∅ ) ∧ ( 𝑔 ∈ ( 𝑌 𝐻 𝑋 ) ∧ ⊤ ) ) → ( 𝑔 ( 𝑌 ( Sect ‘ 𝐶 ) 𝑋 ) 𝐹 ∧ 𝐹 ( 𝑋 ( Sect ‘ 𝐶 ) 𝑌 ) 𝑔 ) ) |
21 |
|
trud |
⊢ ( ( 𝜑 ∧ 𝑔 ∈ ( 𝑌 𝐻 𝑋 ) ) → ⊤ ) |
22 |
21
|
reximdva0 |
⊢ ( ( 𝜑 ∧ ( 𝑌 𝐻 𝑋 ) ≠ ∅ ) → ∃ 𝑔 ∈ ( 𝑌 𝐻 𝑋 ) ⊤ ) |
23 |
20 22
|
reximddv |
⊢ ( ( 𝜑 ∧ ( 𝑌 𝐻 𝑋 ) ≠ ∅ ) → ∃ 𝑔 ∈ ( 𝑌 𝐻 𝑋 ) ( 𝑔 ( 𝑌 ( Sect ‘ 𝐶 ) 𝑋 ) 𝐹 ∧ 𝐹 ( 𝑋 ( Sect ‘ 𝐶 ) 𝑌 ) 𝑔 ) ) |
24 |
|
rexn0 |
⊢ ( ∃ 𝑔 ∈ ( 𝑌 𝐻 𝑋 ) ( 𝑔 ( 𝑌 ( Sect ‘ 𝐶 ) 𝑋 ) 𝐹 ∧ 𝐹 ( 𝑋 ( Sect ‘ 𝐶 ) 𝑌 ) 𝑔 ) → ( 𝑌 𝐻 𝑋 ) ≠ ∅ ) |
25 |
24
|
adantl |
⊢ ( ( 𝜑 ∧ ∃ 𝑔 ∈ ( 𝑌 𝐻 𝑋 ) ( 𝑔 ( 𝑌 ( Sect ‘ 𝐶 ) 𝑋 ) 𝐹 ∧ 𝐹 ( 𝑋 ( Sect ‘ 𝐶 ) 𝑌 ) 𝑔 ) ) → ( 𝑌 𝐻 𝑋 ) ≠ ∅ ) |
26 |
23 25
|
impbida |
⊢ ( 𝜑 → ( ( 𝑌 𝐻 𝑋 ) ≠ ∅ ↔ ∃ 𝑔 ∈ ( 𝑌 𝐻 𝑋 ) ( 𝑔 ( 𝑌 ( Sect ‘ 𝐶 ) 𝑋 ) 𝐹 ∧ 𝐹 ( 𝑋 ( Sect ‘ 𝐶 ) 𝑌 ) 𝑔 ) ) ) |
27 |
10 26
|
bitr4d |
⊢ ( 𝜑 → ( 𝐹 ∈ ( 𝑋 𝐼 𝑌 ) ↔ ( 𝑌 𝐻 𝑋 ) ≠ ∅ ) ) |