Step |
Hyp |
Ref |
Expression |
1 |
|
thincmo.c |
⊢ ( 𝜑 → 𝐶 ∈ ThinCat ) |
2 |
|
thincmo.x |
⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) |
3 |
|
thincmo.y |
⊢ ( 𝜑 → 𝑌 ∈ 𝐵 ) |
4 |
|
thincmo.b |
⊢ 𝐵 = ( Base ‘ 𝐶 ) |
5 |
|
thincmo.h |
⊢ 𝐻 = ( Hom ‘ 𝐶 ) |
6 |
2
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ ( 𝑋 𝐻 𝑌 ) ∧ 𝑔 ∈ ( 𝑋 𝐻 𝑌 ) ) ) → 𝑋 ∈ 𝐵 ) |
7 |
3
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ ( 𝑋 𝐻 𝑌 ) ∧ 𝑔 ∈ ( 𝑋 𝐻 𝑌 ) ) ) → 𝑌 ∈ 𝐵 ) |
8 |
|
simprl |
⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ ( 𝑋 𝐻 𝑌 ) ∧ 𝑔 ∈ ( 𝑋 𝐻 𝑌 ) ) ) → 𝑓 ∈ ( 𝑋 𝐻 𝑌 ) ) |
9 |
|
simprr |
⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ ( 𝑋 𝐻 𝑌 ) ∧ 𝑔 ∈ ( 𝑋 𝐻 𝑌 ) ) ) → 𝑔 ∈ ( 𝑋 𝐻 𝑌 ) ) |
10 |
1
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ ( 𝑋 𝐻 𝑌 ) ∧ 𝑔 ∈ ( 𝑋 𝐻 𝑌 ) ) ) → 𝐶 ∈ ThinCat ) |
11 |
6 7 8 9 4 5 10
|
thincmo2 |
⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ ( 𝑋 𝐻 𝑌 ) ∧ 𝑔 ∈ ( 𝑋 𝐻 𝑌 ) ) ) → 𝑓 = 𝑔 ) |
12 |
11
|
ex |
⊢ ( 𝜑 → ( ( 𝑓 ∈ ( 𝑋 𝐻 𝑌 ) ∧ 𝑔 ∈ ( 𝑋 𝐻 𝑌 ) ) → 𝑓 = 𝑔 ) ) |
13 |
12
|
alrimivv |
⊢ ( 𝜑 → ∀ 𝑓 ∀ 𝑔 ( ( 𝑓 ∈ ( 𝑋 𝐻 𝑌 ) ∧ 𝑔 ∈ ( 𝑋 𝐻 𝑌 ) ) → 𝑓 = 𝑔 ) ) |
14 |
|
eleq1w |
⊢ ( 𝑓 = 𝑔 → ( 𝑓 ∈ ( 𝑋 𝐻 𝑌 ) ↔ 𝑔 ∈ ( 𝑋 𝐻 𝑌 ) ) ) |
15 |
14
|
mo4 |
⊢ ( ∃* 𝑓 𝑓 ∈ ( 𝑋 𝐻 𝑌 ) ↔ ∀ 𝑓 ∀ 𝑔 ( ( 𝑓 ∈ ( 𝑋 𝐻 𝑌 ) ∧ 𝑔 ∈ ( 𝑋 𝐻 𝑌 ) ) → 𝑓 = 𝑔 ) ) |
16 |
13 15
|
sylibr |
⊢ ( 𝜑 → ∃* 𝑓 𝑓 ∈ ( 𝑋 𝐻 𝑌 ) ) |