Metamath Proof Explorer


Theorem thincmo

Description: There is at most one morphism in each hom-set. (Contributed by Zhi Wang, 21-Sep-2024)

Ref Expression
Hypotheses thincmo.c ( 𝜑𝐶 ∈ ThinCat )
thincmo.x ( 𝜑𝑋𝐵 )
thincmo.y ( 𝜑𝑌𝐵 )
thincmo.b 𝐵 = ( Base ‘ 𝐶 )
thincmo.h 𝐻 = ( Hom ‘ 𝐶 )
Assertion thincmo ( 𝜑 → ∃* 𝑓 𝑓 ∈ ( 𝑋 𝐻 𝑌 ) )

Proof

Step Hyp Ref Expression
1 thincmo.c ( 𝜑𝐶 ∈ ThinCat )
2 thincmo.x ( 𝜑𝑋𝐵 )
3 thincmo.y ( 𝜑𝑌𝐵 )
4 thincmo.b 𝐵 = ( Base ‘ 𝐶 )
5 thincmo.h 𝐻 = ( Hom ‘ 𝐶 )
6 2 adantr ( ( 𝜑 ∧ ( 𝑓 ∈ ( 𝑋 𝐻 𝑌 ) ∧ 𝑔 ∈ ( 𝑋 𝐻 𝑌 ) ) ) → 𝑋𝐵 )
7 3 adantr ( ( 𝜑 ∧ ( 𝑓 ∈ ( 𝑋 𝐻 𝑌 ) ∧ 𝑔 ∈ ( 𝑋 𝐻 𝑌 ) ) ) → 𝑌𝐵 )
8 simprl ( ( 𝜑 ∧ ( 𝑓 ∈ ( 𝑋 𝐻 𝑌 ) ∧ 𝑔 ∈ ( 𝑋 𝐻 𝑌 ) ) ) → 𝑓 ∈ ( 𝑋 𝐻 𝑌 ) )
9 simprr ( ( 𝜑 ∧ ( 𝑓 ∈ ( 𝑋 𝐻 𝑌 ) ∧ 𝑔 ∈ ( 𝑋 𝐻 𝑌 ) ) ) → 𝑔 ∈ ( 𝑋 𝐻 𝑌 ) )
10 1 adantr ( ( 𝜑 ∧ ( 𝑓 ∈ ( 𝑋 𝐻 𝑌 ) ∧ 𝑔 ∈ ( 𝑋 𝐻 𝑌 ) ) ) → 𝐶 ∈ ThinCat )
11 6 7 8 9 4 5 10 thincmo2 ( ( 𝜑 ∧ ( 𝑓 ∈ ( 𝑋 𝐻 𝑌 ) ∧ 𝑔 ∈ ( 𝑋 𝐻 𝑌 ) ) ) → 𝑓 = 𝑔 )
12 11 ex ( 𝜑 → ( ( 𝑓 ∈ ( 𝑋 𝐻 𝑌 ) ∧ 𝑔 ∈ ( 𝑋 𝐻 𝑌 ) ) → 𝑓 = 𝑔 ) )
13 12 alrimivv ( 𝜑 → ∀ 𝑓𝑔 ( ( 𝑓 ∈ ( 𝑋 𝐻 𝑌 ) ∧ 𝑔 ∈ ( 𝑋 𝐻 𝑌 ) ) → 𝑓 = 𝑔 ) )
14 eleq1w ( 𝑓 = 𝑔 → ( 𝑓 ∈ ( 𝑋 𝐻 𝑌 ) ↔ 𝑔 ∈ ( 𝑋 𝐻 𝑌 ) ) )
15 14 mo4 ( ∃* 𝑓 𝑓 ∈ ( 𝑋 𝐻 𝑌 ) ↔ ∀ 𝑓𝑔 ( ( 𝑓 ∈ ( 𝑋 𝐻 𝑌 ) ∧ 𝑔 ∈ ( 𝑋 𝐻 𝑌 ) ) → 𝑓 = 𝑔 ) )
16 13 15 sylibr ( 𝜑 → ∃* 𝑓 𝑓 ∈ ( 𝑋 𝐻 𝑌 ) )