| Step | Hyp | Ref | Expression | 
						
							| 1 |  | thincmo.c | ⊢ ( 𝜑  →  𝐶  ∈  ThinCat ) | 
						
							| 2 |  | thincmo.x | ⊢ ( 𝜑  →  𝑋  ∈  𝐵 ) | 
						
							| 3 |  | thincmo.y | ⊢ ( 𝜑  →  𝑌  ∈  𝐵 ) | 
						
							| 4 |  | thincmo.b | ⊢ 𝐵  =  ( Base ‘ 𝐶 ) | 
						
							| 5 |  | thincmo.h | ⊢ 𝐻  =  ( Hom  ‘ 𝐶 ) | 
						
							| 6 | 2 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝑓  ∈  ( 𝑋 𝐻 𝑌 )  ∧  𝑔  ∈  ( 𝑋 𝐻 𝑌 ) ) )  →  𝑋  ∈  𝐵 ) | 
						
							| 7 | 3 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝑓  ∈  ( 𝑋 𝐻 𝑌 )  ∧  𝑔  ∈  ( 𝑋 𝐻 𝑌 ) ) )  →  𝑌  ∈  𝐵 ) | 
						
							| 8 |  | simprl | ⊢ ( ( 𝜑  ∧  ( 𝑓  ∈  ( 𝑋 𝐻 𝑌 )  ∧  𝑔  ∈  ( 𝑋 𝐻 𝑌 ) ) )  →  𝑓  ∈  ( 𝑋 𝐻 𝑌 ) ) | 
						
							| 9 |  | simprr | ⊢ ( ( 𝜑  ∧  ( 𝑓  ∈  ( 𝑋 𝐻 𝑌 )  ∧  𝑔  ∈  ( 𝑋 𝐻 𝑌 ) ) )  →  𝑔  ∈  ( 𝑋 𝐻 𝑌 ) ) | 
						
							| 10 | 1 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝑓  ∈  ( 𝑋 𝐻 𝑌 )  ∧  𝑔  ∈  ( 𝑋 𝐻 𝑌 ) ) )  →  𝐶  ∈  ThinCat ) | 
						
							| 11 | 6 7 8 9 4 5 10 | thincmo2 | ⊢ ( ( 𝜑  ∧  ( 𝑓  ∈  ( 𝑋 𝐻 𝑌 )  ∧  𝑔  ∈  ( 𝑋 𝐻 𝑌 ) ) )  →  𝑓  =  𝑔 ) | 
						
							| 12 | 11 | ex | ⊢ ( 𝜑  →  ( ( 𝑓  ∈  ( 𝑋 𝐻 𝑌 )  ∧  𝑔  ∈  ( 𝑋 𝐻 𝑌 ) )  →  𝑓  =  𝑔 ) ) | 
						
							| 13 | 12 | alrimivv | ⊢ ( 𝜑  →  ∀ 𝑓 ∀ 𝑔 ( ( 𝑓  ∈  ( 𝑋 𝐻 𝑌 )  ∧  𝑔  ∈  ( 𝑋 𝐻 𝑌 ) )  →  𝑓  =  𝑔 ) ) | 
						
							| 14 |  | eleq1w | ⊢ ( 𝑓  =  𝑔  →  ( 𝑓  ∈  ( 𝑋 𝐻 𝑌 )  ↔  𝑔  ∈  ( 𝑋 𝐻 𝑌 ) ) ) | 
						
							| 15 | 14 | mo4 | ⊢ ( ∃* 𝑓 𝑓  ∈  ( 𝑋 𝐻 𝑌 )  ↔  ∀ 𝑓 ∀ 𝑔 ( ( 𝑓  ∈  ( 𝑋 𝐻 𝑌 )  ∧  𝑔  ∈  ( 𝑋 𝐻 𝑌 ) )  →  𝑓  =  𝑔 ) ) | 
						
							| 16 | 13 15 | sylibr | ⊢ ( 𝜑  →  ∃* 𝑓 𝑓  ∈  ( 𝑋 𝐻 𝑌 ) ) |