| Step | Hyp | Ref | Expression | 
						
							| 1 |  | isthincd2lem1.1 | ⊢ ( 𝜑  →  𝑋  ∈  𝐵 ) | 
						
							| 2 |  | isthincd2lem1.2 | ⊢ ( 𝜑  →  𝑌  ∈  𝐵 ) | 
						
							| 3 |  | isthincd2lem1.3 | ⊢ ( 𝜑  →  𝐹  ∈  ( 𝑋 𝐻 𝑌 ) ) | 
						
							| 4 |  | isthincd2lem1.4 | ⊢ ( 𝜑  →  𝐺  ∈  ( 𝑋 𝐻 𝑌 ) ) | 
						
							| 5 |  | thincmo2.b | ⊢ 𝐵  =  ( Base ‘ 𝐶 ) | 
						
							| 6 |  | thincmo2.h | ⊢ 𝐻  =  ( Hom  ‘ 𝐶 ) | 
						
							| 7 |  | thincmo2.c | ⊢ ( 𝜑  →  𝐶  ∈  ThinCat ) | 
						
							| 8 | 5 6 | isthinc | ⊢ ( 𝐶  ∈  ThinCat  ↔  ( 𝐶  ∈  Cat  ∧  ∀ 𝑥  ∈  𝐵 ∀ 𝑦  ∈  𝐵 ∃* 𝑓 𝑓  ∈  ( 𝑥 𝐻 𝑦 ) ) ) | 
						
							| 9 | 8 | simprbi | ⊢ ( 𝐶  ∈  ThinCat  →  ∀ 𝑥  ∈  𝐵 ∀ 𝑦  ∈  𝐵 ∃* 𝑓 𝑓  ∈  ( 𝑥 𝐻 𝑦 ) ) | 
						
							| 10 | 7 9 | syl | ⊢ ( 𝜑  →  ∀ 𝑥  ∈  𝐵 ∀ 𝑦  ∈  𝐵 ∃* 𝑓 𝑓  ∈  ( 𝑥 𝐻 𝑦 ) ) | 
						
							| 11 | 1 2 3 4 10 | isthincd2lem1 | ⊢ ( 𝜑  →  𝐹  =  𝐺 ) |