Metamath Proof Explorer


Theorem thincmo2

Description: Morphisms in the same hom-set are identical. (Contributed by Zhi Wang, 17-Sep-2024)

Ref Expression
Hypotheses isthincd2lem1.1 ( 𝜑𝑋𝐵 )
isthincd2lem1.2 ( 𝜑𝑌𝐵 )
isthincd2lem1.3 ( 𝜑𝐹 ∈ ( 𝑋 𝐻 𝑌 ) )
isthincd2lem1.4 ( 𝜑𝐺 ∈ ( 𝑋 𝐻 𝑌 ) )
thincmo2.b 𝐵 = ( Base ‘ 𝐶 )
thincmo2.h 𝐻 = ( Hom ‘ 𝐶 )
thincmo2.c ( 𝜑𝐶 ∈ ThinCat )
Assertion thincmo2 ( 𝜑𝐹 = 𝐺 )

Proof

Step Hyp Ref Expression
1 isthincd2lem1.1 ( 𝜑𝑋𝐵 )
2 isthincd2lem1.2 ( 𝜑𝑌𝐵 )
3 isthincd2lem1.3 ( 𝜑𝐹 ∈ ( 𝑋 𝐻 𝑌 ) )
4 isthincd2lem1.4 ( 𝜑𝐺 ∈ ( 𝑋 𝐻 𝑌 ) )
5 thincmo2.b 𝐵 = ( Base ‘ 𝐶 )
6 thincmo2.h 𝐻 = ( Hom ‘ 𝐶 )
7 thincmo2.c ( 𝜑𝐶 ∈ ThinCat )
8 5 6 isthinc ( 𝐶 ∈ ThinCat ↔ ( 𝐶 ∈ Cat ∧ ∀ 𝑥𝐵𝑦𝐵 ∃* 𝑓 𝑓 ∈ ( 𝑥 𝐻 𝑦 ) ) )
9 8 simprbi ( 𝐶 ∈ ThinCat → ∀ 𝑥𝐵𝑦𝐵 ∃* 𝑓 𝑓 ∈ ( 𝑥 𝐻 𝑦 ) )
10 7 9 syl ( 𝜑 → ∀ 𝑥𝐵𝑦𝐵 ∃* 𝑓 𝑓 ∈ ( 𝑥 𝐻 𝑦 ) )
11 1 2 3 4 10 isthincd2lem1 ( 𝜑𝐹 = 𝐺 )