Step |
Hyp |
Ref |
Expression |
1 |
|
isthincd2lem1.1 |
⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) |
2 |
|
isthincd2lem1.2 |
⊢ ( 𝜑 → 𝑌 ∈ 𝐵 ) |
3 |
|
isthincd2lem1.3 |
⊢ ( 𝜑 → 𝐹 ∈ ( 𝑋 𝐻 𝑌 ) ) |
4 |
|
isthincd2lem1.4 |
⊢ ( 𝜑 → 𝐺 ∈ ( 𝑋 𝐻 𝑌 ) ) |
5 |
|
thincmo2.b |
⊢ 𝐵 = ( Base ‘ 𝐶 ) |
6 |
|
thincmo2.h |
⊢ 𝐻 = ( Hom ‘ 𝐶 ) |
7 |
|
thincmo2.c |
⊢ ( 𝜑 → 𝐶 ∈ ThinCat ) |
8 |
5 6
|
isthinc |
⊢ ( 𝐶 ∈ ThinCat ↔ ( 𝐶 ∈ Cat ∧ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ∃* 𝑓 𝑓 ∈ ( 𝑥 𝐻 𝑦 ) ) ) |
9 |
8
|
simprbi |
⊢ ( 𝐶 ∈ ThinCat → ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ∃* 𝑓 𝑓 ∈ ( 𝑥 𝐻 𝑦 ) ) |
10 |
7 9
|
syl |
⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ∃* 𝑓 𝑓 ∈ ( 𝑥 𝐻 𝑦 ) ) |
11 |
1 2 3 4 10
|
isthincd2lem1 |
⊢ ( 𝜑 → 𝐹 = 𝐺 ) |