Step |
Hyp |
Ref |
Expression |
1 |
|
thincmo.c |
⊢ ( 𝜑 → 𝐶 ∈ ThinCat ) |
2 |
|
thincmo.x |
⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) |
3 |
|
thincmo.y |
⊢ ( 𝜑 → 𝑌 ∈ 𝐵 ) |
4 |
|
thincmo.b |
⊢ 𝐵 = ( Base ‘ 𝐶 ) |
5 |
|
thincmo.h |
⊢ 𝐻 = ( Hom ‘ 𝐶 ) |
6 |
4 5
|
isthinc |
⊢ ( 𝐶 ∈ ThinCat ↔ ( 𝐶 ∈ Cat ∧ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ∃* 𝑓 𝑓 ∈ ( 𝑥 𝐻 𝑦 ) ) ) |
7 |
6
|
simprbi |
⊢ ( 𝐶 ∈ ThinCat → ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ∃* 𝑓 𝑓 ∈ ( 𝑥 𝐻 𝑦 ) ) |
8 |
1 7
|
syl |
⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ∃* 𝑓 𝑓 ∈ ( 𝑥 𝐻 𝑦 ) ) |
9 |
|
oveq12 |
⊢ ( ( 𝑥 = 𝑋 ∧ 𝑦 = 𝑌 ) → ( 𝑥 𝐻 𝑦 ) = ( 𝑋 𝐻 𝑌 ) ) |
10 |
9
|
eleq2d |
⊢ ( ( 𝑥 = 𝑋 ∧ 𝑦 = 𝑌 ) → ( 𝑓 ∈ ( 𝑥 𝐻 𝑦 ) ↔ 𝑓 ∈ ( 𝑋 𝐻 𝑌 ) ) ) |
11 |
10
|
mobidv |
⊢ ( ( 𝑥 = 𝑋 ∧ 𝑦 = 𝑌 ) → ( ∃* 𝑓 𝑓 ∈ ( 𝑥 𝐻 𝑦 ) ↔ ∃* 𝑓 𝑓 ∈ ( 𝑋 𝐻 𝑌 ) ) ) |
12 |
11
|
rspc2gv |
⊢ ( ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ∃* 𝑓 𝑓 ∈ ( 𝑥 𝐻 𝑦 ) → ∃* 𝑓 𝑓 ∈ ( 𝑋 𝐻 𝑌 ) ) ) |
13 |
2 3 12
|
syl2anc |
⊢ ( 𝜑 → ( ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ∃* 𝑓 𝑓 ∈ ( 𝑥 𝐻 𝑦 ) → ∃* 𝑓 𝑓 ∈ ( 𝑋 𝐻 𝑌 ) ) ) |
14 |
8 13
|
mpd |
⊢ ( 𝜑 → ∃* 𝑓 𝑓 ∈ ( 𝑋 𝐻 𝑌 ) ) |