Metamath Proof Explorer


Theorem thincmoALT

Description: Alternate proof for thincmo . (Contributed by Zhi Wang, 21-Sep-2024) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Hypotheses thincmo.c ( 𝜑𝐶 ∈ ThinCat )
thincmo.x ( 𝜑𝑋𝐵 )
thincmo.y ( 𝜑𝑌𝐵 )
thincmo.b 𝐵 = ( Base ‘ 𝐶 )
thincmo.h 𝐻 = ( Hom ‘ 𝐶 )
Assertion thincmoALT ( 𝜑 → ∃* 𝑓 𝑓 ∈ ( 𝑋 𝐻 𝑌 ) )

Proof

Step Hyp Ref Expression
1 thincmo.c ( 𝜑𝐶 ∈ ThinCat )
2 thincmo.x ( 𝜑𝑋𝐵 )
3 thincmo.y ( 𝜑𝑌𝐵 )
4 thincmo.b 𝐵 = ( Base ‘ 𝐶 )
5 thincmo.h 𝐻 = ( Hom ‘ 𝐶 )
6 4 5 isthinc ( 𝐶 ∈ ThinCat ↔ ( 𝐶 ∈ Cat ∧ ∀ 𝑥𝐵𝑦𝐵 ∃* 𝑓 𝑓 ∈ ( 𝑥 𝐻 𝑦 ) ) )
7 6 simprbi ( 𝐶 ∈ ThinCat → ∀ 𝑥𝐵𝑦𝐵 ∃* 𝑓 𝑓 ∈ ( 𝑥 𝐻 𝑦 ) )
8 1 7 syl ( 𝜑 → ∀ 𝑥𝐵𝑦𝐵 ∃* 𝑓 𝑓 ∈ ( 𝑥 𝐻 𝑦 ) )
9 oveq12 ( ( 𝑥 = 𝑋𝑦 = 𝑌 ) → ( 𝑥 𝐻 𝑦 ) = ( 𝑋 𝐻 𝑌 ) )
10 9 eleq2d ( ( 𝑥 = 𝑋𝑦 = 𝑌 ) → ( 𝑓 ∈ ( 𝑥 𝐻 𝑦 ) ↔ 𝑓 ∈ ( 𝑋 𝐻 𝑌 ) ) )
11 10 mobidv ( ( 𝑥 = 𝑋𝑦 = 𝑌 ) → ( ∃* 𝑓 𝑓 ∈ ( 𝑥 𝐻 𝑦 ) ↔ ∃* 𝑓 𝑓 ∈ ( 𝑋 𝐻 𝑌 ) ) )
12 11 rspc2gv ( ( 𝑋𝐵𝑌𝐵 ) → ( ∀ 𝑥𝐵𝑦𝐵 ∃* 𝑓 𝑓 ∈ ( 𝑥 𝐻 𝑦 ) → ∃* 𝑓 𝑓 ∈ ( 𝑋 𝐻 𝑌 ) ) )
13 2 3 12 syl2anc ( 𝜑 → ( ∀ 𝑥𝐵𝑦𝐵 ∃* 𝑓 𝑓 ∈ ( 𝑥 𝐻 𝑦 ) → ∃* 𝑓 𝑓 ∈ ( 𝑋 𝐻 𝑌 ) ) )
14 8 13 mpd ( 𝜑 → ∃* 𝑓 𝑓 ∈ ( 𝑋 𝐻 𝑌 ) )