| Step |
Hyp |
Ref |
Expression |
| 1 |
|
thincmo.c |
⊢ ( 𝜑 → 𝐶 ∈ ThinCat ) |
| 2 |
|
thincmo.x |
⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) |
| 3 |
|
thincmo.y |
⊢ ( 𝜑 → 𝑌 ∈ 𝐵 ) |
| 4 |
|
thincn0eu.b |
⊢ ( 𝜑 → 𝐵 = ( Base ‘ 𝐶 ) ) |
| 5 |
|
thincn0eu.h |
⊢ ( 𝜑 → 𝐻 = ( Hom ‘ 𝐶 ) ) |
| 6 |
2 4
|
eleqtrd |
⊢ ( 𝜑 → 𝑋 ∈ ( Base ‘ 𝐶 ) ) |
| 7 |
3 4
|
eleqtrd |
⊢ ( 𝜑 → 𝑌 ∈ ( Base ‘ 𝐶 ) ) |
| 8 |
|
eqid |
⊢ ( Base ‘ 𝐶 ) = ( Base ‘ 𝐶 ) |
| 9 |
|
eqid |
⊢ ( Hom ‘ 𝐶 ) = ( Hom ‘ 𝐶 ) |
| 10 |
1 6 7 8 9
|
thincmo |
⊢ ( 𝜑 → ∃* 𝑓 𝑓 ∈ ( 𝑋 ( Hom ‘ 𝐶 ) 𝑌 ) ) |
| 11 |
5
|
oveqd |
⊢ ( 𝜑 → ( 𝑋 𝐻 𝑌 ) = ( 𝑋 ( Hom ‘ 𝐶 ) 𝑌 ) ) |
| 12 |
11
|
eleq2d |
⊢ ( 𝜑 → ( 𝑓 ∈ ( 𝑋 𝐻 𝑌 ) ↔ 𝑓 ∈ ( 𝑋 ( Hom ‘ 𝐶 ) 𝑌 ) ) ) |
| 13 |
12
|
mobidv |
⊢ ( 𝜑 → ( ∃* 𝑓 𝑓 ∈ ( 𝑋 𝐻 𝑌 ) ↔ ∃* 𝑓 𝑓 ∈ ( 𝑋 ( Hom ‘ 𝐶 ) 𝑌 ) ) ) |
| 14 |
10 13
|
mpbird |
⊢ ( 𝜑 → ∃* 𝑓 𝑓 ∈ ( 𝑋 𝐻 𝑌 ) ) |