Metamath Proof Explorer


Theorem thincmod

Description: At most one morphism in each hom-set (deduction form). (Contributed by Zhi Wang, 21-Sep-2024)

Ref Expression
Hypotheses thincmo.c ( 𝜑𝐶 ∈ ThinCat )
thincmo.x ( 𝜑𝑋𝐵 )
thincmo.y ( 𝜑𝑌𝐵 )
thincn0eu.b ( 𝜑𝐵 = ( Base ‘ 𝐶 ) )
thincn0eu.h ( 𝜑𝐻 = ( Hom ‘ 𝐶 ) )
Assertion thincmod ( 𝜑 → ∃* 𝑓 𝑓 ∈ ( 𝑋 𝐻 𝑌 ) )

Proof

Step Hyp Ref Expression
1 thincmo.c ( 𝜑𝐶 ∈ ThinCat )
2 thincmo.x ( 𝜑𝑋𝐵 )
3 thincmo.y ( 𝜑𝑌𝐵 )
4 thincn0eu.b ( 𝜑𝐵 = ( Base ‘ 𝐶 ) )
5 thincn0eu.h ( 𝜑𝐻 = ( Hom ‘ 𝐶 ) )
6 2 4 eleqtrd ( 𝜑𝑋 ∈ ( Base ‘ 𝐶 ) )
7 3 4 eleqtrd ( 𝜑𝑌 ∈ ( Base ‘ 𝐶 ) )
8 eqid ( Base ‘ 𝐶 ) = ( Base ‘ 𝐶 )
9 eqid ( Hom ‘ 𝐶 ) = ( Hom ‘ 𝐶 )
10 1 6 7 8 9 thincmo ( 𝜑 → ∃* 𝑓 𝑓 ∈ ( 𝑋 ( Hom ‘ 𝐶 ) 𝑌 ) )
11 5 oveqd ( 𝜑 → ( 𝑋 𝐻 𝑌 ) = ( 𝑋 ( Hom ‘ 𝐶 ) 𝑌 ) )
12 11 eleq2d ( 𝜑 → ( 𝑓 ∈ ( 𝑋 𝐻 𝑌 ) ↔ 𝑓 ∈ ( 𝑋 ( Hom ‘ 𝐶 ) 𝑌 ) ) )
13 12 mobidv ( 𝜑 → ( ∃* 𝑓 𝑓 ∈ ( 𝑋 𝐻 𝑌 ) ↔ ∃* 𝑓 𝑓 ∈ ( 𝑋 ( Hom ‘ 𝐶 ) 𝑌 ) ) )
14 10 13 mpbird ( 𝜑 → ∃* 𝑓 𝑓 ∈ ( 𝑋 𝐻 𝑌 ) )