Step |
Hyp |
Ref |
Expression |
1 |
|
thincid.c |
⊢ ( 𝜑 → 𝐶 ∈ ThinCat ) |
2 |
|
thincid.b |
⊢ 𝐵 = ( Base ‘ 𝐶 ) |
3 |
|
thincid.h |
⊢ 𝐻 = ( Hom ‘ 𝐶 ) |
4 |
|
thincid.x |
⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) |
5 |
|
thincmon.y |
⊢ ( 𝜑 → 𝑌 ∈ 𝐵 ) |
6 |
|
thincmon.m |
⊢ 𝑀 = ( Mono ‘ 𝐶 ) |
7 |
|
simpr1 |
⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ 𝐵 ∧ 𝑔 ∈ ( 𝑧 𝐻 𝑋 ) ∧ ℎ ∈ ( 𝑧 𝐻 𝑋 ) ) ) → 𝑧 ∈ 𝐵 ) |
8 |
4
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ 𝐵 ∧ 𝑔 ∈ ( 𝑧 𝐻 𝑋 ) ∧ ℎ ∈ ( 𝑧 𝐻 𝑋 ) ) ) → 𝑋 ∈ 𝐵 ) |
9 |
|
simpr2 |
⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ 𝐵 ∧ 𝑔 ∈ ( 𝑧 𝐻 𝑋 ) ∧ ℎ ∈ ( 𝑧 𝐻 𝑋 ) ) ) → 𝑔 ∈ ( 𝑧 𝐻 𝑋 ) ) |
10 |
|
simpr3 |
⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ 𝐵 ∧ 𝑔 ∈ ( 𝑧 𝐻 𝑋 ) ∧ ℎ ∈ ( 𝑧 𝐻 𝑋 ) ) ) → ℎ ∈ ( 𝑧 𝐻 𝑋 ) ) |
11 |
1
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ 𝐵 ∧ 𝑔 ∈ ( 𝑧 𝐻 𝑋 ) ∧ ℎ ∈ ( 𝑧 𝐻 𝑋 ) ) ) → 𝐶 ∈ ThinCat ) |
12 |
7 8 9 10 2 3 11
|
thincmo2 |
⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ 𝐵 ∧ 𝑔 ∈ ( 𝑧 𝐻 𝑋 ) ∧ ℎ ∈ ( 𝑧 𝐻 𝑋 ) ) ) → 𝑔 = ℎ ) |
13 |
12
|
a1d |
⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ 𝐵 ∧ 𝑔 ∈ ( 𝑧 𝐻 𝑋 ) ∧ ℎ ∈ ( 𝑧 𝐻 𝑋 ) ) ) → ( ( 𝑓 ( 〈 𝑧 , 𝑋 〉 ( comp ‘ 𝐶 ) 𝑌 ) 𝑔 ) = ( 𝑓 ( 〈 𝑧 , 𝑋 〉 ( comp ‘ 𝐶 ) 𝑌 ) ℎ ) → 𝑔 = ℎ ) ) |
14 |
13
|
ralrimivvva |
⊢ ( 𝜑 → ∀ 𝑧 ∈ 𝐵 ∀ 𝑔 ∈ ( 𝑧 𝐻 𝑋 ) ∀ ℎ ∈ ( 𝑧 𝐻 𝑋 ) ( ( 𝑓 ( 〈 𝑧 , 𝑋 〉 ( comp ‘ 𝐶 ) 𝑌 ) 𝑔 ) = ( 𝑓 ( 〈 𝑧 , 𝑋 〉 ( comp ‘ 𝐶 ) 𝑌 ) ℎ ) → 𝑔 = ℎ ) ) |
15 |
|
eqid |
⊢ ( comp ‘ 𝐶 ) = ( comp ‘ 𝐶 ) |
16 |
1
|
thinccd |
⊢ ( 𝜑 → 𝐶 ∈ Cat ) |
17 |
2 3 15 6 16 4 5
|
ismon2 |
⊢ ( 𝜑 → ( 𝑓 ∈ ( 𝑋 𝑀 𝑌 ) ↔ ( 𝑓 ∈ ( 𝑋 𝐻 𝑌 ) ∧ ∀ 𝑧 ∈ 𝐵 ∀ 𝑔 ∈ ( 𝑧 𝐻 𝑋 ) ∀ ℎ ∈ ( 𝑧 𝐻 𝑋 ) ( ( 𝑓 ( 〈 𝑧 , 𝑋 〉 ( comp ‘ 𝐶 ) 𝑌 ) 𝑔 ) = ( 𝑓 ( 〈 𝑧 , 𝑋 〉 ( comp ‘ 𝐶 ) 𝑌 ) ℎ ) → 𝑔 = ℎ ) ) ) ) |
18 |
14 17
|
mpbiran2d |
⊢ ( 𝜑 → ( 𝑓 ∈ ( 𝑋 𝑀 𝑌 ) ↔ 𝑓 ∈ ( 𝑋 𝐻 𝑌 ) ) ) |
19 |
18
|
eqrdv |
⊢ ( 𝜑 → ( 𝑋 𝑀 𝑌 ) = ( 𝑋 𝐻 𝑌 ) ) |