| Step |
Hyp |
Ref |
Expression |
| 1 |
|
thincmo.c |
⊢ ( 𝜑 → 𝐶 ∈ ThinCat ) |
| 2 |
|
thincmo.x |
⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) |
| 3 |
|
thincmo.y |
⊢ ( 𝜑 → 𝑌 ∈ 𝐵 ) |
| 4 |
|
thincn0eu.b |
⊢ ( 𝜑 → 𝐵 = ( Base ‘ 𝐶 ) ) |
| 5 |
|
thincn0eu.h |
⊢ ( 𝜑 → 𝐻 = ( Hom ‘ 𝐶 ) ) |
| 6 |
|
n0 |
⊢ ( ( 𝑋 𝐻 𝑌 ) ≠ ∅ ↔ ∃ 𝑓 𝑓 ∈ ( 𝑋 𝐻 𝑌 ) ) |
| 7 |
6
|
biimpi |
⊢ ( ( 𝑋 𝐻 𝑌 ) ≠ ∅ → ∃ 𝑓 𝑓 ∈ ( 𝑋 𝐻 𝑌 ) ) |
| 8 |
1 2 3 4 5
|
thincmod |
⊢ ( 𝜑 → ∃* 𝑓 𝑓 ∈ ( 𝑋 𝐻 𝑌 ) ) |
| 9 |
7 8
|
anim12i |
⊢ ( ( ( 𝑋 𝐻 𝑌 ) ≠ ∅ ∧ 𝜑 ) → ( ∃ 𝑓 𝑓 ∈ ( 𝑋 𝐻 𝑌 ) ∧ ∃* 𝑓 𝑓 ∈ ( 𝑋 𝐻 𝑌 ) ) ) |
| 10 |
|
df-eu |
⊢ ( ∃! 𝑓 𝑓 ∈ ( 𝑋 𝐻 𝑌 ) ↔ ( ∃ 𝑓 𝑓 ∈ ( 𝑋 𝐻 𝑌 ) ∧ ∃* 𝑓 𝑓 ∈ ( 𝑋 𝐻 𝑌 ) ) ) |
| 11 |
9 10
|
sylibr |
⊢ ( ( ( 𝑋 𝐻 𝑌 ) ≠ ∅ ∧ 𝜑 ) → ∃! 𝑓 𝑓 ∈ ( 𝑋 𝐻 𝑌 ) ) |
| 12 |
11
|
expcom |
⊢ ( 𝜑 → ( ( 𝑋 𝐻 𝑌 ) ≠ ∅ → ∃! 𝑓 𝑓 ∈ ( 𝑋 𝐻 𝑌 ) ) ) |
| 13 |
|
euex |
⊢ ( ∃! 𝑓 𝑓 ∈ ( 𝑋 𝐻 𝑌 ) → ∃ 𝑓 𝑓 ∈ ( 𝑋 𝐻 𝑌 ) ) |
| 14 |
13 6
|
sylibr |
⊢ ( ∃! 𝑓 𝑓 ∈ ( 𝑋 𝐻 𝑌 ) → ( 𝑋 𝐻 𝑌 ) ≠ ∅ ) |
| 15 |
12 14
|
impbid1 |
⊢ ( 𝜑 → ( ( 𝑋 𝐻 𝑌 ) ≠ ∅ ↔ ∃! 𝑓 𝑓 ∈ ( 𝑋 𝐻 𝑌 ) ) ) |