Metamath Proof Explorer


Theorem thincsect2

Description: In a thin category, F is a section of G iff G is a section of F . (Contributed by Zhi Wang, 24-Sep-2024)

Ref Expression
Hypotheses thincsect.c ( 𝜑𝐶 ∈ ThinCat )
thincsect.b 𝐵 = ( Base ‘ 𝐶 )
thincsect.x ( 𝜑𝑋𝐵 )
thincsect.y ( 𝜑𝑌𝐵 )
thincsect.s 𝑆 = ( Sect ‘ 𝐶 )
Assertion thincsect2 ( 𝜑 → ( 𝐹 ( 𝑋 𝑆 𝑌 ) 𝐺𝐺 ( 𝑌 𝑆 𝑋 ) 𝐹 ) )

Proof

Step Hyp Ref Expression
1 thincsect.c ( 𝜑𝐶 ∈ ThinCat )
2 thincsect.b 𝐵 = ( Base ‘ 𝐶 )
3 thincsect.x ( 𝜑𝑋𝐵 )
4 thincsect.y ( 𝜑𝑌𝐵 )
5 thincsect.s 𝑆 = ( Sect ‘ 𝐶 )
6 ancom ( ( 𝐹 ∈ ( 𝑋 ( Hom ‘ 𝐶 ) 𝑌 ) ∧ 𝐺 ∈ ( 𝑌 ( Hom ‘ 𝐶 ) 𝑋 ) ) ↔ ( 𝐺 ∈ ( 𝑌 ( Hom ‘ 𝐶 ) 𝑋 ) ∧ 𝐹 ∈ ( 𝑋 ( Hom ‘ 𝐶 ) 𝑌 ) ) )
7 6 a1i ( 𝜑 → ( ( 𝐹 ∈ ( 𝑋 ( Hom ‘ 𝐶 ) 𝑌 ) ∧ 𝐺 ∈ ( 𝑌 ( Hom ‘ 𝐶 ) 𝑋 ) ) ↔ ( 𝐺 ∈ ( 𝑌 ( Hom ‘ 𝐶 ) 𝑋 ) ∧ 𝐹 ∈ ( 𝑋 ( Hom ‘ 𝐶 ) 𝑌 ) ) ) )
8 eqid ( Hom ‘ 𝐶 ) = ( Hom ‘ 𝐶 )
9 1 2 3 4 5 8 thincsect ( 𝜑 → ( 𝐹 ( 𝑋 𝑆 𝑌 ) 𝐺 ↔ ( 𝐹 ∈ ( 𝑋 ( Hom ‘ 𝐶 ) 𝑌 ) ∧ 𝐺 ∈ ( 𝑌 ( Hom ‘ 𝐶 ) 𝑋 ) ) ) )
10 1 2 4 3 5 8 thincsect ( 𝜑 → ( 𝐺 ( 𝑌 𝑆 𝑋 ) 𝐹 ↔ ( 𝐺 ∈ ( 𝑌 ( Hom ‘ 𝐶 ) 𝑋 ) ∧ 𝐹 ∈ ( 𝑋 ( Hom ‘ 𝐶 ) 𝑌 ) ) ) )
11 7 9 10 3bitr4d ( 𝜑 → ( 𝐹 ( 𝑋 𝑆 𝑌 ) 𝐺𝐺 ( 𝑌 𝑆 𝑋 ) 𝐹 ) )