Step |
Hyp |
Ref |
Expression |
1 |
|
thincsect.c |
⊢ ( 𝜑 → 𝐶 ∈ ThinCat ) |
2 |
|
thincsect.b |
⊢ 𝐵 = ( Base ‘ 𝐶 ) |
3 |
|
thincsect.x |
⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) |
4 |
|
thincsect.y |
⊢ ( 𝜑 → 𝑌 ∈ 𝐵 ) |
5 |
|
thincsect.s |
⊢ 𝑆 = ( Sect ‘ 𝐶 ) |
6 |
|
ancom |
⊢ ( ( 𝐹 ∈ ( 𝑋 ( Hom ‘ 𝐶 ) 𝑌 ) ∧ 𝐺 ∈ ( 𝑌 ( Hom ‘ 𝐶 ) 𝑋 ) ) ↔ ( 𝐺 ∈ ( 𝑌 ( Hom ‘ 𝐶 ) 𝑋 ) ∧ 𝐹 ∈ ( 𝑋 ( Hom ‘ 𝐶 ) 𝑌 ) ) ) |
7 |
6
|
a1i |
⊢ ( 𝜑 → ( ( 𝐹 ∈ ( 𝑋 ( Hom ‘ 𝐶 ) 𝑌 ) ∧ 𝐺 ∈ ( 𝑌 ( Hom ‘ 𝐶 ) 𝑋 ) ) ↔ ( 𝐺 ∈ ( 𝑌 ( Hom ‘ 𝐶 ) 𝑋 ) ∧ 𝐹 ∈ ( 𝑋 ( Hom ‘ 𝐶 ) 𝑌 ) ) ) ) |
8 |
|
eqid |
⊢ ( Hom ‘ 𝐶 ) = ( Hom ‘ 𝐶 ) |
9 |
1 2 3 4 5 8
|
thincsect |
⊢ ( 𝜑 → ( 𝐹 ( 𝑋 𝑆 𝑌 ) 𝐺 ↔ ( 𝐹 ∈ ( 𝑋 ( Hom ‘ 𝐶 ) 𝑌 ) ∧ 𝐺 ∈ ( 𝑌 ( Hom ‘ 𝐶 ) 𝑋 ) ) ) ) |
10 |
1 2 4 3 5 8
|
thincsect |
⊢ ( 𝜑 → ( 𝐺 ( 𝑌 𝑆 𝑋 ) 𝐹 ↔ ( 𝐺 ∈ ( 𝑌 ( Hom ‘ 𝐶 ) 𝑋 ) ∧ 𝐹 ∈ ( 𝑋 ( Hom ‘ 𝐶 ) 𝑌 ) ) ) ) |
11 |
7 9 10
|
3bitr4d |
⊢ ( 𝜑 → ( 𝐹 ( 𝑋 𝑆 𝑌 ) 𝐺 ↔ 𝐺 ( 𝑌 𝑆 𝑋 ) 𝐹 ) ) |