Step |
Hyp |
Ref |
Expression |
1 |
|
thlval.k |
⊢ 𝐾 = ( toHL ‘ 𝑊 ) |
2 |
|
thlbas.c |
⊢ 𝐶 = ( ClSubSp ‘ 𝑊 ) |
3 |
2
|
fvexi |
⊢ 𝐶 ∈ V |
4 |
|
eqid |
⊢ ( toInc ‘ 𝐶 ) = ( toInc ‘ 𝐶 ) |
5 |
4
|
ipobas |
⊢ ( 𝐶 ∈ V → 𝐶 = ( Base ‘ ( toInc ‘ 𝐶 ) ) ) |
6 |
3 5
|
ax-mp |
⊢ 𝐶 = ( Base ‘ ( toInc ‘ 𝐶 ) ) |
7 |
|
baseid |
⊢ Base = Slot ( Base ‘ ndx ) |
8 |
|
1re |
⊢ 1 ∈ ℝ |
9 |
|
1nn |
⊢ 1 ∈ ℕ |
10 |
|
1nn0 |
⊢ 1 ∈ ℕ0 |
11 |
|
1lt10 |
⊢ 1 < ; 1 0 |
12 |
9 10 10 11
|
declti |
⊢ 1 < ; 1 1 |
13 |
8 12
|
ltneii |
⊢ 1 ≠ ; 1 1 |
14 |
|
basendx |
⊢ ( Base ‘ ndx ) = 1 |
15 |
|
ocndx |
⊢ ( oc ‘ ndx ) = ; 1 1 |
16 |
14 15
|
neeq12i |
⊢ ( ( Base ‘ ndx ) ≠ ( oc ‘ ndx ) ↔ 1 ≠ ; 1 1 ) |
17 |
13 16
|
mpbir |
⊢ ( Base ‘ ndx ) ≠ ( oc ‘ ndx ) |
18 |
7 17
|
setsnid |
⊢ ( Base ‘ ( toInc ‘ 𝐶 ) ) = ( Base ‘ ( ( toInc ‘ 𝐶 ) sSet 〈 ( oc ‘ ndx ) , ( ocv ‘ 𝑊 ) 〉 ) ) |
19 |
6 18
|
eqtri |
⊢ 𝐶 = ( Base ‘ ( ( toInc ‘ 𝐶 ) sSet 〈 ( oc ‘ ndx ) , ( ocv ‘ 𝑊 ) 〉 ) ) |
20 |
|
eqid |
⊢ ( ocv ‘ 𝑊 ) = ( ocv ‘ 𝑊 ) |
21 |
1 2 4 20
|
thlval |
⊢ ( 𝑊 ∈ V → 𝐾 = ( ( toInc ‘ 𝐶 ) sSet 〈 ( oc ‘ ndx ) , ( ocv ‘ 𝑊 ) 〉 ) ) |
22 |
21
|
fveq2d |
⊢ ( 𝑊 ∈ V → ( Base ‘ 𝐾 ) = ( Base ‘ ( ( toInc ‘ 𝐶 ) sSet 〈 ( oc ‘ ndx ) , ( ocv ‘ 𝑊 ) 〉 ) ) ) |
23 |
19 22
|
eqtr4id |
⊢ ( 𝑊 ∈ V → 𝐶 = ( Base ‘ 𝐾 ) ) |
24 |
|
base0 |
⊢ ∅ = ( Base ‘ ∅ ) |
25 |
|
fvprc |
⊢ ( ¬ 𝑊 ∈ V → ( ClSubSp ‘ 𝑊 ) = ∅ ) |
26 |
2 25
|
eqtrid |
⊢ ( ¬ 𝑊 ∈ V → 𝐶 = ∅ ) |
27 |
|
fvprc |
⊢ ( ¬ 𝑊 ∈ V → ( toHL ‘ 𝑊 ) = ∅ ) |
28 |
1 27
|
eqtrid |
⊢ ( ¬ 𝑊 ∈ V → 𝐾 = ∅ ) |
29 |
28
|
fveq2d |
⊢ ( ¬ 𝑊 ∈ V → ( Base ‘ 𝐾 ) = ( Base ‘ ∅ ) ) |
30 |
24 26 29
|
3eqtr4a |
⊢ ( ¬ 𝑊 ∈ V → 𝐶 = ( Base ‘ 𝐾 ) ) |
31 |
23 30
|
pm2.61i |
⊢ 𝐶 = ( Base ‘ 𝐾 ) |