Description: Ordering on the Hilbert lattice of closed subspaces. (Contributed by Mario Carneiro, 25-Oct-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | thlval.k | ⊢ 𝐾 = ( toHL ‘ 𝑊 ) | |
| thlbas.c | ⊢ 𝐶 = ( ClSubSp ‘ 𝑊 ) | ||
| thlleval.l | ⊢ ≤ = ( le ‘ 𝐾 ) | ||
| Assertion | thlleval | ⊢ ( ( 𝑆 ∈ 𝐶 ∧ 𝑇 ∈ 𝐶 ) → ( 𝑆 ≤ 𝑇 ↔ 𝑆 ⊆ 𝑇 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | thlval.k | ⊢ 𝐾 = ( toHL ‘ 𝑊 ) | |
| 2 | thlbas.c | ⊢ 𝐶 = ( ClSubSp ‘ 𝑊 ) | |
| 3 | thlleval.l | ⊢ ≤ = ( le ‘ 𝐾 ) | |
| 4 | 2 | fvexi | ⊢ 𝐶 ∈ V |
| 5 | eqid | ⊢ ( toInc ‘ 𝐶 ) = ( toInc ‘ 𝐶 ) | |
| 6 | eqid | ⊢ ( le ‘ ( toInc ‘ 𝐶 ) ) = ( le ‘ ( toInc ‘ 𝐶 ) ) | |
| 7 | 1 2 5 6 | thlle | ⊢ ( le ‘ ( toInc ‘ 𝐶 ) ) = ( le ‘ 𝐾 ) |
| 8 | 3 7 | eqtr4i | ⊢ ≤ = ( le ‘ ( toInc ‘ 𝐶 ) ) |
| 9 | 5 8 | ipole | ⊢ ( ( 𝐶 ∈ V ∧ 𝑆 ∈ 𝐶 ∧ 𝑇 ∈ 𝐶 ) → ( 𝑆 ≤ 𝑇 ↔ 𝑆 ⊆ 𝑇 ) ) |
| 10 | 4 9 | mp3an1 | ⊢ ( ( 𝑆 ∈ 𝐶 ∧ 𝑇 ∈ 𝐶 ) → ( 𝑆 ≤ 𝑇 ↔ 𝑆 ⊆ 𝑇 ) ) |