Metamath Proof Explorer


Theorem thlleval

Description: Ordering on the Hilbert lattice of closed subspaces. (Contributed by Mario Carneiro, 25-Oct-2015)

Ref Expression
Hypotheses thlval.k 𝐾 = ( toHL ‘ 𝑊 )
thlbas.c 𝐶 = ( ClSubSp ‘ 𝑊 )
thlleval.l = ( le ‘ 𝐾 )
Assertion thlleval ( ( 𝑆𝐶𝑇𝐶 ) → ( 𝑆 𝑇𝑆𝑇 ) )

Proof

Step Hyp Ref Expression
1 thlval.k 𝐾 = ( toHL ‘ 𝑊 )
2 thlbas.c 𝐶 = ( ClSubSp ‘ 𝑊 )
3 thlleval.l = ( le ‘ 𝐾 )
4 2 fvexi 𝐶 ∈ V
5 eqid ( toInc ‘ 𝐶 ) = ( toInc ‘ 𝐶 )
6 eqid ( le ‘ ( toInc ‘ 𝐶 ) ) = ( le ‘ ( toInc ‘ 𝐶 ) )
7 1 2 5 6 thlle ( le ‘ ( toInc ‘ 𝐶 ) ) = ( le ‘ 𝐾 )
8 3 7 eqtr4i = ( le ‘ ( toInc ‘ 𝐶 ) )
9 5 8 ipole ( ( 𝐶 ∈ V ∧ 𝑆𝐶𝑇𝐶 ) → ( 𝑆 𝑇𝑆𝑇 ) )
10 4 9 mp3an1 ( ( 𝑆𝐶𝑇𝐶 ) → ( 𝑆 𝑇𝑆𝑇 ) )