Step |
Hyp |
Ref |
Expression |
1 |
|
thlval.k |
⊢ 𝐾 = ( toHL ‘ 𝑊 ) |
2 |
|
thlval.c |
⊢ 𝐶 = ( ClSubSp ‘ 𝑊 ) |
3 |
|
thlval.i |
⊢ 𝐼 = ( toInc ‘ 𝐶 ) |
4 |
|
thlval.o |
⊢ ⊥ = ( ocv ‘ 𝑊 ) |
5 |
|
elex |
⊢ ( 𝑊 ∈ 𝑉 → 𝑊 ∈ V ) |
6 |
|
fveq2 |
⊢ ( ℎ = 𝑊 → ( ClSubSp ‘ ℎ ) = ( ClSubSp ‘ 𝑊 ) ) |
7 |
6 2
|
eqtr4di |
⊢ ( ℎ = 𝑊 → ( ClSubSp ‘ ℎ ) = 𝐶 ) |
8 |
7
|
fveq2d |
⊢ ( ℎ = 𝑊 → ( toInc ‘ ( ClSubSp ‘ ℎ ) ) = ( toInc ‘ 𝐶 ) ) |
9 |
8 3
|
eqtr4di |
⊢ ( ℎ = 𝑊 → ( toInc ‘ ( ClSubSp ‘ ℎ ) ) = 𝐼 ) |
10 |
|
fveq2 |
⊢ ( ℎ = 𝑊 → ( ocv ‘ ℎ ) = ( ocv ‘ 𝑊 ) ) |
11 |
10 4
|
eqtr4di |
⊢ ( ℎ = 𝑊 → ( ocv ‘ ℎ ) = ⊥ ) |
12 |
11
|
opeq2d |
⊢ ( ℎ = 𝑊 → 〈 ( oc ‘ ndx ) , ( ocv ‘ ℎ ) 〉 = 〈 ( oc ‘ ndx ) , ⊥ 〉 ) |
13 |
9 12
|
oveq12d |
⊢ ( ℎ = 𝑊 → ( ( toInc ‘ ( ClSubSp ‘ ℎ ) ) sSet 〈 ( oc ‘ ndx ) , ( ocv ‘ ℎ ) 〉 ) = ( 𝐼 sSet 〈 ( oc ‘ ndx ) , ⊥ 〉 ) ) |
14 |
|
df-thl |
⊢ toHL = ( ℎ ∈ V ↦ ( ( toInc ‘ ( ClSubSp ‘ ℎ ) ) sSet 〈 ( oc ‘ ndx ) , ( ocv ‘ ℎ ) 〉 ) ) |
15 |
|
ovex |
⊢ ( 𝐼 sSet 〈 ( oc ‘ ndx ) , ⊥ 〉 ) ∈ V |
16 |
13 14 15
|
fvmpt |
⊢ ( 𝑊 ∈ V → ( toHL ‘ 𝑊 ) = ( 𝐼 sSet 〈 ( oc ‘ ndx ) , ⊥ 〉 ) ) |
17 |
1 16
|
eqtrid |
⊢ ( 𝑊 ∈ V → 𝐾 = ( 𝐼 sSet 〈 ( oc ‘ ndx ) , ⊥ 〉 ) ) |
18 |
5 17
|
syl |
⊢ ( 𝑊 ∈ 𝑉 → 𝐾 = ( 𝐼 sSet 〈 ( oc ‘ ndx ) , ⊥ 〉 ) ) |