Step |
Hyp |
Ref |
Expression |
1 |
|
3re |
⊢ 3 ∈ ℝ |
2 |
|
2re |
⊢ 2 ∈ ℝ |
3 |
|
2ne0 |
⊢ 2 ≠ 0 |
4 |
1 2 3
|
redivcli |
⊢ ( 3 / 2 ) ∈ ℝ |
5 |
4
|
recni |
⊢ ( 3 / 2 ) ∈ ℂ |
6 |
|
1nn0 |
⊢ 1 ∈ ℕ0 |
7 |
|
5re |
⊢ 5 ∈ ℝ |
8 |
|
dpcl |
⊢ ( ( 1 ∈ ℕ0 ∧ 5 ∈ ℝ ) → ( 1 . 5 ) ∈ ℝ ) |
9 |
6 7 8
|
mp2an |
⊢ ( 1 . 5 ) ∈ ℝ |
10 |
9
|
recni |
⊢ ( 1 . 5 ) ∈ ℂ |
11 |
|
2cnne0 |
⊢ ( 2 ∈ ℂ ∧ 2 ≠ 0 ) |
12 |
5 10 11
|
3pm3.2i |
⊢ ( ( 3 / 2 ) ∈ ℂ ∧ ( 1 . 5 ) ∈ ℂ ∧ ( 2 ∈ ℂ ∧ 2 ≠ 0 ) ) |
13 |
|
5nn0 |
⊢ 5 ∈ ℕ0 |
14 |
|
3nn0 |
⊢ 3 ∈ ℕ0 |
15 |
|
0nn0 |
⊢ 0 ∈ ℕ0 |
16 |
|
eqid |
⊢ ; 1 5 = ; 1 5 |
17 |
|
df-2 |
⊢ 2 = ( 1 + 1 ) |
18 |
17
|
oveq1i |
⊢ ( 2 + 1 ) = ( ( 1 + 1 ) + 1 ) |
19 |
|
2p1e3 |
⊢ ( 2 + 1 ) = 3 |
20 |
18 19
|
eqtr3i |
⊢ ( ( 1 + 1 ) + 1 ) = 3 |
21 |
|
5p5e10 |
⊢ ( 5 + 5 ) = ; 1 0 |
22 |
6 13 6 13 16 16 20 15 21
|
decaddc |
⊢ ( ; 1 5 + ; 1 5 ) = ; 3 0 |
23 |
6 13 6 13 14 15 22
|
dpadd |
⊢ ( ( 1 . 5 ) + ( 1 . 5 ) ) = ( 3 . 0 ) |
24 |
14
|
dp0u |
⊢ ( 3 . 0 ) = 3 |
25 |
23 24
|
eqtri |
⊢ ( ( 1 . 5 ) + ( 1 . 5 ) ) = 3 |
26 |
10
|
times2i |
⊢ ( ( 1 . 5 ) · 2 ) = ( ( 1 . 5 ) + ( 1 . 5 ) ) |
27 |
1
|
recni |
⊢ 3 ∈ ℂ |
28 |
11
|
simpli |
⊢ 2 ∈ ℂ |
29 |
27 28 3
|
divcan1i |
⊢ ( ( 3 / 2 ) · 2 ) = 3 |
30 |
25 26 29
|
3eqtr4ri |
⊢ ( ( 3 / 2 ) · 2 ) = ( ( 1 . 5 ) · 2 ) |
31 |
|
mulcan2 |
⊢ ( ( ( 3 / 2 ) ∈ ℂ ∧ ( 1 . 5 ) ∈ ℂ ∧ ( 2 ∈ ℂ ∧ 2 ≠ 0 ) ) → ( ( ( 3 / 2 ) · 2 ) = ( ( 1 . 5 ) · 2 ) ↔ ( 3 / 2 ) = ( 1 . 5 ) ) ) |
32 |
31
|
biimpa |
⊢ ( ( ( ( 3 / 2 ) ∈ ℂ ∧ ( 1 . 5 ) ∈ ℂ ∧ ( 2 ∈ ℂ ∧ 2 ≠ 0 ) ) ∧ ( ( 3 / 2 ) · 2 ) = ( ( 1 . 5 ) · 2 ) ) → ( 3 / 2 ) = ( 1 . 5 ) ) |
33 |
12 30 32
|
mp2an |
⊢ ( 3 / 2 ) = ( 1 . 5 ) |