Step |
Hyp |
Ref |
Expression |
1 |
|
eqid |
⊢ ( ·sf ‘ 𝑊 ) = ( ·sf ‘ 𝑊 ) |
2 |
|
eqid |
⊢ ( TopOpen ‘ 𝑊 ) = ( TopOpen ‘ 𝑊 ) |
3 |
|
eqid |
⊢ ( Scalar ‘ 𝑊 ) = ( Scalar ‘ 𝑊 ) |
4 |
|
eqid |
⊢ ( TopOpen ‘ ( Scalar ‘ 𝑊 ) ) = ( TopOpen ‘ ( Scalar ‘ 𝑊 ) ) |
5 |
1 2 3 4
|
istlm |
⊢ ( 𝑊 ∈ TopMod ↔ ( ( 𝑊 ∈ TopMnd ∧ 𝑊 ∈ LMod ∧ ( Scalar ‘ 𝑊 ) ∈ TopRing ) ∧ ( ·sf ‘ 𝑊 ) ∈ ( ( ( TopOpen ‘ ( Scalar ‘ 𝑊 ) ) ×t ( TopOpen ‘ 𝑊 ) ) Cn ( TopOpen ‘ 𝑊 ) ) ) ) |
6 |
5
|
simplbi |
⊢ ( 𝑊 ∈ TopMod → ( 𝑊 ∈ TopMnd ∧ 𝑊 ∈ LMod ∧ ( Scalar ‘ 𝑊 ) ∈ TopRing ) ) |
7 |
6
|
simp1d |
⊢ ( 𝑊 ∈ TopMod → 𝑊 ∈ TopMnd ) |