Metamath Proof Explorer


Theorem tlmtmd

Description: A topological module is a topological monoid. (Contributed by Mario Carneiro, 5-Oct-2015)

Ref Expression
Assertion tlmtmd ( 𝑊 ∈ TopMod → 𝑊 ∈ TopMnd )

Proof

Step Hyp Ref Expression
1 eqid ( ·sf𝑊 ) = ( ·sf𝑊 )
2 eqid ( TopOpen ‘ 𝑊 ) = ( TopOpen ‘ 𝑊 )
3 eqid ( Scalar ‘ 𝑊 ) = ( Scalar ‘ 𝑊 )
4 eqid ( TopOpen ‘ ( Scalar ‘ 𝑊 ) ) = ( TopOpen ‘ ( Scalar ‘ 𝑊 ) )
5 1 2 3 4 istlm ( 𝑊 ∈ TopMod ↔ ( ( 𝑊 ∈ TopMnd ∧ 𝑊 ∈ LMod ∧ ( Scalar ‘ 𝑊 ) ∈ TopRing ) ∧ ( ·sf𝑊 ) ∈ ( ( ( TopOpen ‘ ( Scalar ‘ 𝑊 ) ) ×t ( TopOpen ‘ 𝑊 ) ) Cn ( TopOpen ‘ 𝑊 ) ) ) )
6 5 simplbi ( 𝑊 ∈ TopMod → ( 𝑊 ∈ TopMnd ∧ 𝑊 ∈ LMod ∧ ( Scalar ‘ 𝑊 ) ∈ TopRing ) )
7 6 simp1d ( 𝑊 ∈ TopMod → 𝑊 ∈ TopMnd )