Metamath Proof Explorer


Theorem tlmtrg

Description: The scalar ring of a topological module is a topological ring. (Contributed by Mario Carneiro, 5-Oct-2015)

Ref Expression
Hypothesis tlmtrg.f 𝐹 = ( Scalar ‘ 𝑊 )
Assertion tlmtrg ( 𝑊 ∈ TopMod → 𝐹 ∈ TopRing )

Proof

Step Hyp Ref Expression
1 tlmtrg.f 𝐹 = ( Scalar ‘ 𝑊 )
2 eqid ( ·sf𝑊 ) = ( ·sf𝑊 )
3 eqid ( TopOpen ‘ 𝑊 ) = ( TopOpen ‘ 𝑊 )
4 eqid ( TopOpen ‘ 𝐹 ) = ( TopOpen ‘ 𝐹 )
5 2 3 1 4 istlm ( 𝑊 ∈ TopMod ↔ ( ( 𝑊 ∈ TopMnd ∧ 𝑊 ∈ LMod ∧ 𝐹 ∈ TopRing ) ∧ ( ·sf𝑊 ) ∈ ( ( ( TopOpen ‘ 𝐹 ) ×t ( TopOpen ‘ 𝑊 ) ) Cn ( TopOpen ‘ 𝑊 ) ) ) )
6 5 simplbi ( 𝑊 ∈ TopMod → ( 𝑊 ∈ TopMnd ∧ 𝑊 ∈ LMod ∧ 𝐹 ∈ TopRing ) )
7 6 simp3d ( 𝑊 ∈ TopMod → 𝐹 ∈ TopRing )