Step |
Hyp |
Ref |
Expression |
1 |
|
tleile.b |
⊢ 𝐵 = ( Base ‘ 𝐾 ) |
2 |
|
tleile.l |
⊢ ≤ = ( le ‘ 𝐾 ) |
3 |
|
tltnle.s |
⊢ < = ( lt ‘ 𝐾 ) |
4 |
|
tospos |
⊢ ( 𝐾 ∈ Toset → 𝐾 ∈ Poset ) |
5 |
1 2 3
|
pltval3 |
⊢ ( ( 𝐾 ∈ Poset ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( 𝑋 < 𝑌 ↔ ( 𝑋 ≤ 𝑌 ∧ ¬ 𝑌 ≤ 𝑋 ) ) ) |
6 |
4 5
|
syl3an1 |
⊢ ( ( 𝐾 ∈ Toset ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( 𝑋 < 𝑌 ↔ ( 𝑋 ≤ 𝑌 ∧ ¬ 𝑌 ≤ 𝑋 ) ) ) |
7 |
1 2
|
tleile |
⊢ ( ( 𝐾 ∈ Toset ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( 𝑋 ≤ 𝑌 ∨ 𝑌 ≤ 𝑋 ) ) |
8 |
|
ibar |
⊢ ( ( 𝑋 ≤ 𝑌 ∨ 𝑌 ≤ 𝑋 ) → ( ¬ 𝑌 ≤ 𝑋 ↔ ( ( 𝑋 ≤ 𝑌 ∨ 𝑌 ≤ 𝑋 ) ∧ ¬ 𝑌 ≤ 𝑋 ) ) ) |
9 |
|
pm5.61 |
⊢ ( ( ( 𝑋 ≤ 𝑌 ∨ 𝑌 ≤ 𝑋 ) ∧ ¬ 𝑌 ≤ 𝑋 ) ↔ ( 𝑋 ≤ 𝑌 ∧ ¬ 𝑌 ≤ 𝑋 ) ) |
10 |
8 9
|
bitr2di |
⊢ ( ( 𝑋 ≤ 𝑌 ∨ 𝑌 ≤ 𝑋 ) → ( ( 𝑋 ≤ 𝑌 ∧ ¬ 𝑌 ≤ 𝑋 ) ↔ ¬ 𝑌 ≤ 𝑋 ) ) |
11 |
7 10
|
syl |
⊢ ( ( 𝐾 ∈ Toset ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( ( 𝑋 ≤ 𝑌 ∧ ¬ 𝑌 ≤ 𝑋 ) ↔ ¬ 𝑌 ≤ 𝑋 ) ) |
12 |
6 11
|
bitrd |
⊢ ( ( 𝐾 ∈ Toset ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( 𝑋 < 𝑌 ↔ ¬ 𝑌 ≤ 𝑋 ) ) |