| Step | Hyp | Ref | Expression | 
						
							| 1 |  | tmdgsum.j | ⊢ 𝐽  =  ( TopOpen ‘ 𝐺 ) | 
						
							| 2 |  | tmdgsum.b | ⊢ 𝐵  =  ( Base ‘ 𝐺 ) | 
						
							| 3 |  | oveq2 | ⊢ ( 𝑤  =  ∅  →  ( 𝐵  ↑m  𝑤 )  =  ( 𝐵  ↑m  ∅ ) ) | 
						
							| 4 | 3 | mpteq1d | ⊢ ( 𝑤  =  ∅  →  ( 𝑥  ∈  ( 𝐵  ↑m  𝑤 )  ↦  ( 𝐺  Σg  𝑥 ) )  =  ( 𝑥  ∈  ( 𝐵  ↑m  ∅ )  ↦  ( 𝐺  Σg  𝑥 ) ) ) | 
						
							| 5 |  | xpeq1 | ⊢ ( 𝑤  =  ∅  →  ( 𝑤  ×  { 𝐽 } )  =  ( ∅  ×  { 𝐽 } ) ) | 
						
							| 6 |  | 0xp | ⊢ ( ∅  ×  { 𝐽 } )  =  ∅ | 
						
							| 7 | 5 6 | eqtrdi | ⊢ ( 𝑤  =  ∅  →  ( 𝑤  ×  { 𝐽 } )  =  ∅ ) | 
						
							| 8 | 7 | fveq2d | ⊢ ( 𝑤  =  ∅  →  ( ∏t ‘ ( 𝑤  ×  { 𝐽 } ) )  =  ( ∏t ‘ ∅ ) ) | 
						
							| 9 | 8 | oveq1d | ⊢ ( 𝑤  =  ∅  →  ( ( ∏t ‘ ( 𝑤  ×  { 𝐽 } ) )  Cn  𝐽 )  =  ( ( ∏t ‘ ∅ )  Cn  𝐽 ) ) | 
						
							| 10 | 4 9 | eleq12d | ⊢ ( 𝑤  =  ∅  →  ( ( 𝑥  ∈  ( 𝐵  ↑m  𝑤 )  ↦  ( 𝐺  Σg  𝑥 ) )  ∈  ( ( ∏t ‘ ( 𝑤  ×  { 𝐽 } ) )  Cn  𝐽 )  ↔  ( 𝑥  ∈  ( 𝐵  ↑m  ∅ )  ↦  ( 𝐺  Σg  𝑥 ) )  ∈  ( ( ∏t ‘ ∅ )  Cn  𝐽 ) ) ) | 
						
							| 11 | 10 | imbi2d | ⊢ ( 𝑤  =  ∅  →  ( ( ( 𝐺  ∈  CMnd  ∧  𝐺  ∈  TopMnd )  →  ( 𝑥  ∈  ( 𝐵  ↑m  𝑤 )  ↦  ( 𝐺  Σg  𝑥 ) )  ∈  ( ( ∏t ‘ ( 𝑤  ×  { 𝐽 } ) )  Cn  𝐽 ) )  ↔  ( ( 𝐺  ∈  CMnd  ∧  𝐺  ∈  TopMnd )  →  ( 𝑥  ∈  ( 𝐵  ↑m  ∅ )  ↦  ( 𝐺  Σg  𝑥 ) )  ∈  ( ( ∏t ‘ ∅ )  Cn  𝐽 ) ) ) ) | 
						
							| 12 |  | oveq2 | ⊢ ( 𝑤  =  𝑦  →  ( 𝐵  ↑m  𝑤 )  =  ( 𝐵  ↑m  𝑦 ) ) | 
						
							| 13 | 12 | mpteq1d | ⊢ ( 𝑤  =  𝑦  →  ( 𝑥  ∈  ( 𝐵  ↑m  𝑤 )  ↦  ( 𝐺  Σg  𝑥 ) )  =  ( 𝑥  ∈  ( 𝐵  ↑m  𝑦 )  ↦  ( 𝐺  Σg  𝑥 ) ) ) | 
						
							| 14 |  | xpeq1 | ⊢ ( 𝑤  =  𝑦  →  ( 𝑤  ×  { 𝐽 } )  =  ( 𝑦  ×  { 𝐽 } ) ) | 
						
							| 15 | 14 | fveq2d | ⊢ ( 𝑤  =  𝑦  →  ( ∏t ‘ ( 𝑤  ×  { 𝐽 } ) )  =  ( ∏t ‘ ( 𝑦  ×  { 𝐽 } ) ) ) | 
						
							| 16 | 15 | oveq1d | ⊢ ( 𝑤  =  𝑦  →  ( ( ∏t ‘ ( 𝑤  ×  { 𝐽 } ) )  Cn  𝐽 )  =  ( ( ∏t ‘ ( 𝑦  ×  { 𝐽 } ) )  Cn  𝐽 ) ) | 
						
							| 17 | 13 16 | eleq12d | ⊢ ( 𝑤  =  𝑦  →  ( ( 𝑥  ∈  ( 𝐵  ↑m  𝑤 )  ↦  ( 𝐺  Σg  𝑥 ) )  ∈  ( ( ∏t ‘ ( 𝑤  ×  { 𝐽 } ) )  Cn  𝐽 )  ↔  ( 𝑥  ∈  ( 𝐵  ↑m  𝑦 )  ↦  ( 𝐺  Σg  𝑥 ) )  ∈  ( ( ∏t ‘ ( 𝑦  ×  { 𝐽 } ) )  Cn  𝐽 ) ) ) | 
						
							| 18 | 17 | imbi2d | ⊢ ( 𝑤  =  𝑦  →  ( ( ( 𝐺  ∈  CMnd  ∧  𝐺  ∈  TopMnd )  →  ( 𝑥  ∈  ( 𝐵  ↑m  𝑤 )  ↦  ( 𝐺  Σg  𝑥 ) )  ∈  ( ( ∏t ‘ ( 𝑤  ×  { 𝐽 } ) )  Cn  𝐽 ) )  ↔  ( ( 𝐺  ∈  CMnd  ∧  𝐺  ∈  TopMnd )  →  ( 𝑥  ∈  ( 𝐵  ↑m  𝑦 )  ↦  ( 𝐺  Σg  𝑥 ) )  ∈  ( ( ∏t ‘ ( 𝑦  ×  { 𝐽 } ) )  Cn  𝐽 ) ) ) ) | 
						
							| 19 |  | oveq2 | ⊢ ( 𝑤  =  ( 𝑦  ∪  { 𝑧 } )  →  ( 𝐵  ↑m  𝑤 )  =  ( 𝐵  ↑m  ( 𝑦  ∪  { 𝑧 } ) ) ) | 
						
							| 20 | 19 | mpteq1d | ⊢ ( 𝑤  =  ( 𝑦  ∪  { 𝑧 } )  →  ( 𝑥  ∈  ( 𝐵  ↑m  𝑤 )  ↦  ( 𝐺  Σg  𝑥 ) )  =  ( 𝑥  ∈  ( 𝐵  ↑m  ( 𝑦  ∪  { 𝑧 } ) )  ↦  ( 𝐺  Σg  𝑥 ) ) ) | 
						
							| 21 |  | xpeq1 | ⊢ ( 𝑤  =  ( 𝑦  ∪  { 𝑧 } )  →  ( 𝑤  ×  { 𝐽 } )  =  ( ( 𝑦  ∪  { 𝑧 } )  ×  { 𝐽 } ) ) | 
						
							| 22 | 21 | fveq2d | ⊢ ( 𝑤  =  ( 𝑦  ∪  { 𝑧 } )  →  ( ∏t ‘ ( 𝑤  ×  { 𝐽 } ) )  =  ( ∏t ‘ ( ( 𝑦  ∪  { 𝑧 } )  ×  { 𝐽 } ) ) ) | 
						
							| 23 | 22 | oveq1d | ⊢ ( 𝑤  =  ( 𝑦  ∪  { 𝑧 } )  →  ( ( ∏t ‘ ( 𝑤  ×  { 𝐽 } ) )  Cn  𝐽 )  =  ( ( ∏t ‘ ( ( 𝑦  ∪  { 𝑧 } )  ×  { 𝐽 } ) )  Cn  𝐽 ) ) | 
						
							| 24 | 20 23 | eleq12d | ⊢ ( 𝑤  =  ( 𝑦  ∪  { 𝑧 } )  →  ( ( 𝑥  ∈  ( 𝐵  ↑m  𝑤 )  ↦  ( 𝐺  Σg  𝑥 ) )  ∈  ( ( ∏t ‘ ( 𝑤  ×  { 𝐽 } ) )  Cn  𝐽 )  ↔  ( 𝑥  ∈  ( 𝐵  ↑m  ( 𝑦  ∪  { 𝑧 } ) )  ↦  ( 𝐺  Σg  𝑥 ) )  ∈  ( ( ∏t ‘ ( ( 𝑦  ∪  { 𝑧 } )  ×  { 𝐽 } ) )  Cn  𝐽 ) ) ) | 
						
							| 25 | 24 | imbi2d | ⊢ ( 𝑤  =  ( 𝑦  ∪  { 𝑧 } )  →  ( ( ( 𝐺  ∈  CMnd  ∧  𝐺  ∈  TopMnd )  →  ( 𝑥  ∈  ( 𝐵  ↑m  𝑤 )  ↦  ( 𝐺  Σg  𝑥 ) )  ∈  ( ( ∏t ‘ ( 𝑤  ×  { 𝐽 } ) )  Cn  𝐽 ) )  ↔  ( ( 𝐺  ∈  CMnd  ∧  𝐺  ∈  TopMnd )  →  ( 𝑥  ∈  ( 𝐵  ↑m  ( 𝑦  ∪  { 𝑧 } ) )  ↦  ( 𝐺  Σg  𝑥 ) )  ∈  ( ( ∏t ‘ ( ( 𝑦  ∪  { 𝑧 } )  ×  { 𝐽 } ) )  Cn  𝐽 ) ) ) ) | 
						
							| 26 |  | oveq2 | ⊢ ( 𝑤  =  𝐴  →  ( 𝐵  ↑m  𝑤 )  =  ( 𝐵  ↑m  𝐴 ) ) | 
						
							| 27 | 26 | mpteq1d | ⊢ ( 𝑤  =  𝐴  →  ( 𝑥  ∈  ( 𝐵  ↑m  𝑤 )  ↦  ( 𝐺  Σg  𝑥 ) )  =  ( 𝑥  ∈  ( 𝐵  ↑m  𝐴 )  ↦  ( 𝐺  Σg  𝑥 ) ) ) | 
						
							| 28 |  | xpeq1 | ⊢ ( 𝑤  =  𝐴  →  ( 𝑤  ×  { 𝐽 } )  =  ( 𝐴  ×  { 𝐽 } ) ) | 
						
							| 29 | 28 | fveq2d | ⊢ ( 𝑤  =  𝐴  →  ( ∏t ‘ ( 𝑤  ×  { 𝐽 } ) )  =  ( ∏t ‘ ( 𝐴  ×  { 𝐽 } ) ) ) | 
						
							| 30 | 29 | oveq1d | ⊢ ( 𝑤  =  𝐴  →  ( ( ∏t ‘ ( 𝑤  ×  { 𝐽 } ) )  Cn  𝐽 )  =  ( ( ∏t ‘ ( 𝐴  ×  { 𝐽 } ) )  Cn  𝐽 ) ) | 
						
							| 31 | 27 30 | eleq12d | ⊢ ( 𝑤  =  𝐴  →  ( ( 𝑥  ∈  ( 𝐵  ↑m  𝑤 )  ↦  ( 𝐺  Σg  𝑥 ) )  ∈  ( ( ∏t ‘ ( 𝑤  ×  { 𝐽 } ) )  Cn  𝐽 )  ↔  ( 𝑥  ∈  ( 𝐵  ↑m  𝐴 )  ↦  ( 𝐺  Σg  𝑥 ) )  ∈  ( ( ∏t ‘ ( 𝐴  ×  { 𝐽 } ) )  Cn  𝐽 ) ) ) | 
						
							| 32 | 31 | imbi2d | ⊢ ( 𝑤  =  𝐴  →  ( ( ( 𝐺  ∈  CMnd  ∧  𝐺  ∈  TopMnd )  →  ( 𝑥  ∈  ( 𝐵  ↑m  𝑤 )  ↦  ( 𝐺  Σg  𝑥 ) )  ∈  ( ( ∏t ‘ ( 𝑤  ×  { 𝐽 } ) )  Cn  𝐽 ) )  ↔  ( ( 𝐺  ∈  CMnd  ∧  𝐺  ∈  TopMnd )  →  ( 𝑥  ∈  ( 𝐵  ↑m  𝐴 )  ↦  ( 𝐺  Σg  𝑥 ) )  ∈  ( ( ∏t ‘ ( 𝐴  ×  { 𝐽 } ) )  Cn  𝐽 ) ) ) ) | 
						
							| 33 |  | elmapfn | ⊢ ( 𝑥  ∈  ( 𝐵  ↑m  ∅ )  →  𝑥  Fn  ∅ ) | 
						
							| 34 |  | fn0 | ⊢ ( 𝑥  Fn  ∅  ↔  𝑥  =  ∅ ) | 
						
							| 35 | 33 34 | sylib | ⊢ ( 𝑥  ∈  ( 𝐵  ↑m  ∅ )  →  𝑥  =  ∅ ) | 
						
							| 36 | 35 | oveq2d | ⊢ ( 𝑥  ∈  ( 𝐵  ↑m  ∅ )  →  ( 𝐺  Σg  𝑥 )  =  ( 𝐺  Σg  ∅ ) ) | 
						
							| 37 |  | eqid | ⊢ ( 0g ‘ 𝐺 )  =  ( 0g ‘ 𝐺 ) | 
						
							| 38 | 37 | gsum0 | ⊢ ( 𝐺  Σg  ∅ )  =  ( 0g ‘ 𝐺 ) | 
						
							| 39 | 36 38 | eqtrdi | ⊢ ( 𝑥  ∈  ( 𝐵  ↑m  ∅ )  →  ( 𝐺  Σg  𝑥 )  =  ( 0g ‘ 𝐺 ) ) | 
						
							| 40 | 39 | mpteq2ia | ⊢ ( 𝑥  ∈  ( 𝐵  ↑m  ∅ )  ↦  ( 𝐺  Σg  𝑥 ) )  =  ( 𝑥  ∈  ( 𝐵  ↑m  ∅ )  ↦  ( 0g ‘ 𝐺 ) ) | 
						
							| 41 |  | 0ex | ⊢ ∅  ∈  V | 
						
							| 42 | 1 2 | tmdtopon | ⊢ ( 𝐺  ∈  TopMnd  →  𝐽  ∈  ( TopOn ‘ 𝐵 ) ) | 
						
							| 43 | 42 | adantl | ⊢ ( ( 𝐺  ∈  CMnd  ∧  𝐺  ∈  TopMnd )  →  𝐽  ∈  ( TopOn ‘ 𝐵 ) ) | 
						
							| 44 | 6 | fveq2i | ⊢ ( ∏t ‘ ( ∅  ×  { 𝐽 } ) )  =  ( ∏t ‘ ∅ ) | 
						
							| 45 | 44 | eqcomi | ⊢ ( ∏t ‘ ∅ )  =  ( ∏t ‘ ( ∅  ×  { 𝐽 } ) ) | 
						
							| 46 | 45 | pttoponconst | ⊢ ( ( ∅  ∈  V  ∧  𝐽  ∈  ( TopOn ‘ 𝐵 ) )  →  ( ∏t ‘ ∅ )  ∈  ( TopOn ‘ ( 𝐵  ↑m  ∅ ) ) ) | 
						
							| 47 | 41 43 46 | sylancr | ⊢ ( ( 𝐺  ∈  CMnd  ∧  𝐺  ∈  TopMnd )  →  ( ∏t ‘ ∅ )  ∈  ( TopOn ‘ ( 𝐵  ↑m  ∅ ) ) ) | 
						
							| 48 |  | tmdmnd | ⊢ ( 𝐺  ∈  TopMnd  →  𝐺  ∈  Mnd ) | 
						
							| 49 | 48 | adantl | ⊢ ( ( 𝐺  ∈  CMnd  ∧  𝐺  ∈  TopMnd )  →  𝐺  ∈  Mnd ) | 
						
							| 50 | 2 37 | mndidcl | ⊢ ( 𝐺  ∈  Mnd  →  ( 0g ‘ 𝐺 )  ∈  𝐵 ) | 
						
							| 51 | 49 50 | syl | ⊢ ( ( 𝐺  ∈  CMnd  ∧  𝐺  ∈  TopMnd )  →  ( 0g ‘ 𝐺 )  ∈  𝐵 ) | 
						
							| 52 | 47 43 51 | cnmptc | ⊢ ( ( 𝐺  ∈  CMnd  ∧  𝐺  ∈  TopMnd )  →  ( 𝑥  ∈  ( 𝐵  ↑m  ∅ )  ↦  ( 0g ‘ 𝐺 ) )  ∈  ( ( ∏t ‘ ∅ )  Cn  𝐽 ) ) | 
						
							| 53 | 40 52 | eqeltrid | ⊢ ( ( 𝐺  ∈  CMnd  ∧  𝐺  ∈  TopMnd )  →  ( 𝑥  ∈  ( 𝐵  ↑m  ∅ )  ↦  ( 𝐺  Σg  𝑥 ) )  ∈  ( ( ∏t ‘ ∅ )  Cn  𝐽 ) ) | 
						
							| 54 |  | oveq2 | ⊢ ( 𝑥  =  𝑤  →  ( 𝐺  Σg  𝑥 )  =  ( 𝐺  Σg  𝑤 ) ) | 
						
							| 55 | 54 | cbvmptv | ⊢ ( 𝑥  ∈  ( 𝐵  ↑m  ( 𝑦  ∪  { 𝑧 } ) )  ↦  ( 𝐺  Σg  𝑥 ) )  =  ( 𝑤  ∈  ( 𝐵  ↑m  ( 𝑦  ∪  { 𝑧 } ) )  ↦  ( 𝐺  Σg  𝑤 ) ) | 
						
							| 56 |  | eqid | ⊢ ( +g ‘ 𝐺 )  =  ( +g ‘ 𝐺 ) | 
						
							| 57 |  | simpl1l | ⊢ ( ( ( ( 𝐺  ∈  CMnd  ∧  𝐺  ∈  TopMnd )  ∧  ( 𝑦  ∈  Fin  ∧  ¬  𝑧  ∈  𝑦 )  ∧  ( 𝑥  ∈  ( 𝐵  ↑m  𝑦 )  ↦  ( 𝐺  Σg  𝑥 ) )  ∈  ( ( ∏t ‘ ( 𝑦  ×  { 𝐽 } ) )  Cn  𝐽 ) )  ∧  𝑤  ∈  ( 𝐵  ↑m  ( 𝑦  ∪  { 𝑧 } ) ) )  →  𝐺  ∈  CMnd ) | 
						
							| 58 |  | simp2l | ⊢ ( ( ( 𝐺  ∈  CMnd  ∧  𝐺  ∈  TopMnd )  ∧  ( 𝑦  ∈  Fin  ∧  ¬  𝑧  ∈  𝑦 )  ∧  ( 𝑥  ∈  ( 𝐵  ↑m  𝑦 )  ↦  ( 𝐺  Σg  𝑥 ) )  ∈  ( ( ∏t ‘ ( 𝑦  ×  { 𝐽 } ) )  Cn  𝐽 ) )  →  𝑦  ∈  Fin ) | 
						
							| 59 |  | snfi | ⊢ { 𝑧 }  ∈  Fin | 
						
							| 60 |  | unfi | ⊢ ( ( 𝑦  ∈  Fin  ∧  { 𝑧 }  ∈  Fin )  →  ( 𝑦  ∪  { 𝑧 } )  ∈  Fin ) | 
						
							| 61 | 58 59 60 | sylancl | ⊢ ( ( ( 𝐺  ∈  CMnd  ∧  𝐺  ∈  TopMnd )  ∧  ( 𝑦  ∈  Fin  ∧  ¬  𝑧  ∈  𝑦 )  ∧  ( 𝑥  ∈  ( 𝐵  ↑m  𝑦 )  ↦  ( 𝐺  Σg  𝑥 ) )  ∈  ( ( ∏t ‘ ( 𝑦  ×  { 𝐽 } ) )  Cn  𝐽 ) )  →  ( 𝑦  ∪  { 𝑧 } )  ∈  Fin ) | 
						
							| 62 | 61 | adantr | ⊢ ( ( ( ( 𝐺  ∈  CMnd  ∧  𝐺  ∈  TopMnd )  ∧  ( 𝑦  ∈  Fin  ∧  ¬  𝑧  ∈  𝑦 )  ∧  ( 𝑥  ∈  ( 𝐵  ↑m  𝑦 )  ↦  ( 𝐺  Σg  𝑥 ) )  ∈  ( ( ∏t ‘ ( 𝑦  ×  { 𝐽 } ) )  Cn  𝐽 ) )  ∧  𝑤  ∈  ( 𝐵  ↑m  ( 𝑦  ∪  { 𝑧 } ) ) )  →  ( 𝑦  ∪  { 𝑧 } )  ∈  Fin ) | 
						
							| 63 |  | elmapi | ⊢ ( 𝑤  ∈  ( 𝐵  ↑m  ( 𝑦  ∪  { 𝑧 } ) )  →  𝑤 : ( 𝑦  ∪  { 𝑧 } ) ⟶ 𝐵 ) | 
						
							| 64 | 63 | adantl | ⊢ ( ( ( ( 𝐺  ∈  CMnd  ∧  𝐺  ∈  TopMnd )  ∧  ( 𝑦  ∈  Fin  ∧  ¬  𝑧  ∈  𝑦 )  ∧  ( 𝑥  ∈  ( 𝐵  ↑m  𝑦 )  ↦  ( 𝐺  Σg  𝑥 ) )  ∈  ( ( ∏t ‘ ( 𝑦  ×  { 𝐽 } ) )  Cn  𝐽 ) )  ∧  𝑤  ∈  ( 𝐵  ↑m  ( 𝑦  ∪  { 𝑧 } ) ) )  →  𝑤 : ( 𝑦  ∪  { 𝑧 } ) ⟶ 𝐵 ) | 
						
							| 65 |  | fvexd | ⊢ ( ( ( ( 𝐺  ∈  CMnd  ∧  𝐺  ∈  TopMnd )  ∧  ( 𝑦  ∈  Fin  ∧  ¬  𝑧  ∈  𝑦 )  ∧  ( 𝑥  ∈  ( 𝐵  ↑m  𝑦 )  ↦  ( 𝐺  Σg  𝑥 ) )  ∈  ( ( ∏t ‘ ( 𝑦  ×  { 𝐽 } ) )  Cn  𝐽 ) )  ∧  𝑤  ∈  ( 𝐵  ↑m  ( 𝑦  ∪  { 𝑧 } ) ) )  →  ( 0g ‘ 𝐺 )  ∈  V ) | 
						
							| 66 | 64 62 65 | fdmfifsupp | ⊢ ( ( ( ( 𝐺  ∈  CMnd  ∧  𝐺  ∈  TopMnd )  ∧  ( 𝑦  ∈  Fin  ∧  ¬  𝑧  ∈  𝑦 )  ∧  ( 𝑥  ∈  ( 𝐵  ↑m  𝑦 )  ↦  ( 𝐺  Σg  𝑥 ) )  ∈  ( ( ∏t ‘ ( 𝑦  ×  { 𝐽 } ) )  Cn  𝐽 ) )  ∧  𝑤  ∈  ( 𝐵  ↑m  ( 𝑦  ∪  { 𝑧 } ) ) )  →  𝑤  finSupp  ( 0g ‘ 𝐺 ) ) | 
						
							| 67 |  | simpl2r | ⊢ ( ( ( ( 𝐺  ∈  CMnd  ∧  𝐺  ∈  TopMnd )  ∧  ( 𝑦  ∈  Fin  ∧  ¬  𝑧  ∈  𝑦 )  ∧  ( 𝑥  ∈  ( 𝐵  ↑m  𝑦 )  ↦  ( 𝐺  Σg  𝑥 ) )  ∈  ( ( ∏t ‘ ( 𝑦  ×  { 𝐽 } ) )  Cn  𝐽 ) )  ∧  𝑤  ∈  ( 𝐵  ↑m  ( 𝑦  ∪  { 𝑧 } ) ) )  →  ¬  𝑧  ∈  𝑦 ) | 
						
							| 68 |  | disjsn | ⊢ ( ( 𝑦  ∩  { 𝑧 } )  =  ∅  ↔  ¬  𝑧  ∈  𝑦 ) | 
						
							| 69 | 67 68 | sylibr | ⊢ ( ( ( ( 𝐺  ∈  CMnd  ∧  𝐺  ∈  TopMnd )  ∧  ( 𝑦  ∈  Fin  ∧  ¬  𝑧  ∈  𝑦 )  ∧  ( 𝑥  ∈  ( 𝐵  ↑m  𝑦 )  ↦  ( 𝐺  Σg  𝑥 ) )  ∈  ( ( ∏t ‘ ( 𝑦  ×  { 𝐽 } ) )  Cn  𝐽 ) )  ∧  𝑤  ∈  ( 𝐵  ↑m  ( 𝑦  ∪  { 𝑧 } ) ) )  →  ( 𝑦  ∩  { 𝑧 } )  =  ∅ ) | 
						
							| 70 |  | eqidd | ⊢ ( ( ( ( 𝐺  ∈  CMnd  ∧  𝐺  ∈  TopMnd )  ∧  ( 𝑦  ∈  Fin  ∧  ¬  𝑧  ∈  𝑦 )  ∧  ( 𝑥  ∈  ( 𝐵  ↑m  𝑦 )  ↦  ( 𝐺  Σg  𝑥 ) )  ∈  ( ( ∏t ‘ ( 𝑦  ×  { 𝐽 } ) )  Cn  𝐽 ) )  ∧  𝑤  ∈  ( 𝐵  ↑m  ( 𝑦  ∪  { 𝑧 } ) ) )  →  ( 𝑦  ∪  { 𝑧 } )  =  ( 𝑦  ∪  { 𝑧 } ) ) | 
						
							| 71 | 2 37 56 57 62 64 66 69 70 | gsumsplit | ⊢ ( ( ( ( 𝐺  ∈  CMnd  ∧  𝐺  ∈  TopMnd )  ∧  ( 𝑦  ∈  Fin  ∧  ¬  𝑧  ∈  𝑦 )  ∧  ( 𝑥  ∈  ( 𝐵  ↑m  𝑦 )  ↦  ( 𝐺  Σg  𝑥 ) )  ∈  ( ( ∏t ‘ ( 𝑦  ×  { 𝐽 } ) )  Cn  𝐽 ) )  ∧  𝑤  ∈  ( 𝐵  ↑m  ( 𝑦  ∪  { 𝑧 } ) ) )  →  ( 𝐺  Σg  𝑤 )  =  ( ( 𝐺  Σg  ( 𝑤  ↾  𝑦 ) ) ( +g ‘ 𝐺 ) ( 𝐺  Σg  ( 𝑤  ↾  { 𝑧 } ) ) ) ) | 
						
							| 72 | 71 | mpteq2dva | ⊢ ( ( ( 𝐺  ∈  CMnd  ∧  𝐺  ∈  TopMnd )  ∧  ( 𝑦  ∈  Fin  ∧  ¬  𝑧  ∈  𝑦 )  ∧  ( 𝑥  ∈  ( 𝐵  ↑m  𝑦 )  ↦  ( 𝐺  Σg  𝑥 ) )  ∈  ( ( ∏t ‘ ( 𝑦  ×  { 𝐽 } ) )  Cn  𝐽 ) )  →  ( 𝑤  ∈  ( 𝐵  ↑m  ( 𝑦  ∪  { 𝑧 } ) )  ↦  ( 𝐺  Σg  𝑤 ) )  =  ( 𝑤  ∈  ( 𝐵  ↑m  ( 𝑦  ∪  { 𝑧 } ) )  ↦  ( ( 𝐺  Σg  ( 𝑤  ↾  𝑦 ) ) ( +g ‘ 𝐺 ) ( 𝐺  Σg  ( 𝑤  ↾  { 𝑧 } ) ) ) ) ) | 
						
							| 73 | 55 72 | eqtrid | ⊢ ( ( ( 𝐺  ∈  CMnd  ∧  𝐺  ∈  TopMnd )  ∧  ( 𝑦  ∈  Fin  ∧  ¬  𝑧  ∈  𝑦 )  ∧  ( 𝑥  ∈  ( 𝐵  ↑m  𝑦 )  ↦  ( 𝐺  Σg  𝑥 ) )  ∈  ( ( ∏t ‘ ( 𝑦  ×  { 𝐽 } ) )  Cn  𝐽 ) )  →  ( 𝑥  ∈  ( 𝐵  ↑m  ( 𝑦  ∪  { 𝑧 } ) )  ↦  ( 𝐺  Σg  𝑥 ) )  =  ( 𝑤  ∈  ( 𝐵  ↑m  ( 𝑦  ∪  { 𝑧 } ) )  ↦  ( ( 𝐺  Σg  ( 𝑤  ↾  𝑦 ) ) ( +g ‘ 𝐺 ) ( 𝐺  Σg  ( 𝑤  ↾  { 𝑧 } ) ) ) ) ) | 
						
							| 74 |  | simp1r | ⊢ ( ( ( 𝐺  ∈  CMnd  ∧  𝐺  ∈  TopMnd )  ∧  ( 𝑦  ∈  Fin  ∧  ¬  𝑧  ∈  𝑦 )  ∧  ( 𝑥  ∈  ( 𝐵  ↑m  𝑦 )  ↦  ( 𝐺  Σg  𝑥 ) )  ∈  ( ( ∏t ‘ ( 𝑦  ×  { 𝐽 } ) )  Cn  𝐽 ) )  →  𝐺  ∈  TopMnd ) | 
						
							| 75 | 74 42 | syl | ⊢ ( ( ( 𝐺  ∈  CMnd  ∧  𝐺  ∈  TopMnd )  ∧  ( 𝑦  ∈  Fin  ∧  ¬  𝑧  ∈  𝑦 )  ∧  ( 𝑥  ∈  ( 𝐵  ↑m  𝑦 )  ↦  ( 𝐺  Σg  𝑥 ) )  ∈  ( ( ∏t ‘ ( 𝑦  ×  { 𝐽 } ) )  Cn  𝐽 ) )  →  𝐽  ∈  ( TopOn ‘ 𝐵 ) ) | 
						
							| 76 |  | eqid | ⊢ ( ∏t ‘ ( ( 𝑦  ∪  { 𝑧 } )  ×  { 𝐽 } ) )  =  ( ∏t ‘ ( ( 𝑦  ∪  { 𝑧 } )  ×  { 𝐽 } ) ) | 
						
							| 77 | 76 | pttoponconst | ⊢ ( ( ( 𝑦  ∪  { 𝑧 } )  ∈  Fin  ∧  𝐽  ∈  ( TopOn ‘ 𝐵 ) )  →  ( ∏t ‘ ( ( 𝑦  ∪  { 𝑧 } )  ×  { 𝐽 } ) )  ∈  ( TopOn ‘ ( 𝐵  ↑m  ( 𝑦  ∪  { 𝑧 } ) ) ) ) | 
						
							| 78 | 61 75 77 | syl2anc | ⊢ ( ( ( 𝐺  ∈  CMnd  ∧  𝐺  ∈  TopMnd )  ∧  ( 𝑦  ∈  Fin  ∧  ¬  𝑧  ∈  𝑦 )  ∧  ( 𝑥  ∈  ( 𝐵  ↑m  𝑦 )  ↦  ( 𝐺  Σg  𝑥 ) )  ∈  ( ( ∏t ‘ ( 𝑦  ×  { 𝐽 } ) )  Cn  𝐽 ) )  →  ( ∏t ‘ ( ( 𝑦  ∪  { 𝑧 } )  ×  { 𝐽 } ) )  ∈  ( TopOn ‘ ( 𝐵  ↑m  ( 𝑦  ∪  { 𝑧 } ) ) ) ) | 
						
							| 79 |  | toponuni | ⊢ ( ( ∏t ‘ ( ( 𝑦  ∪  { 𝑧 } )  ×  { 𝐽 } ) )  ∈  ( TopOn ‘ ( 𝐵  ↑m  ( 𝑦  ∪  { 𝑧 } ) ) )  →  ( 𝐵  ↑m  ( 𝑦  ∪  { 𝑧 } ) )  =  ∪  ( ∏t ‘ ( ( 𝑦  ∪  { 𝑧 } )  ×  { 𝐽 } ) ) ) | 
						
							| 80 | 78 79 | syl | ⊢ ( ( ( 𝐺  ∈  CMnd  ∧  𝐺  ∈  TopMnd )  ∧  ( 𝑦  ∈  Fin  ∧  ¬  𝑧  ∈  𝑦 )  ∧  ( 𝑥  ∈  ( 𝐵  ↑m  𝑦 )  ↦  ( 𝐺  Σg  𝑥 ) )  ∈  ( ( ∏t ‘ ( 𝑦  ×  { 𝐽 } ) )  Cn  𝐽 ) )  →  ( 𝐵  ↑m  ( 𝑦  ∪  { 𝑧 } ) )  =  ∪  ( ∏t ‘ ( ( 𝑦  ∪  { 𝑧 } )  ×  { 𝐽 } ) ) ) | 
						
							| 81 | 80 | mpteq1d | ⊢ ( ( ( 𝐺  ∈  CMnd  ∧  𝐺  ∈  TopMnd )  ∧  ( 𝑦  ∈  Fin  ∧  ¬  𝑧  ∈  𝑦 )  ∧  ( 𝑥  ∈  ( 𝐵  ↑m  𝑦 )  ↦  ( 𝐺  Σg  𝑥 ) )  ∈  ( ( ∏t ‘ ( 𝑦  ×  { 𝐽 } ) )  Cn  𝐽 ) )  →  ( 𝑤  ∈  ( 𝐵  ↑m  ( 𝑦  ∪  { 𝑧 } ) )  ↦  ( 𝑤  ↾  𝑦 ) )  =  ( 𝑤  ∈  ∪  ( ∏t ‘ ( ( 𝑦  ∪  { 𝑧 } )  ×  { 𝐽 } ) )  ↦  ( 𝑤  ↾  𝑦 ) ) ) | 
						
							| 82 |  | topontop | ⊢ ( 𝐽  ∈  ( TopOn ‘ 𝐵 )  →  𝐽  ∈  Top ) | 
						
							| 83 | 74 42 82 | 3syl | ⊢ ( ( ( 𝐺  ∈  CMnd  ∧  𝐺  ∈  TopMnd )  ∧  ( 𝑦  ∈  Fin  ∧  ¬  𝑧  ∈  𝑦 )  ∧  ( 𝑥  ∈  ( 𝐵  ↑m  𝑦 )  ↦  ( 𝐺  Σg  𝑥 ) )  ∈  ( ( ∏t ‘ ( 𝑦  ×  { 𝐽 } ) )  Cn  𝐽 ) )  →  𝐽  ∈  Top ) | 
						
							| 84 |  | fconst6g | ⊢ ( 𝐽  ∈  Top  →  ( ( 𝑦  ∪  { 𝑧 } )  ×  { 𝐽 } ) : ( 𝑦  ∪  { 𝑧 } ) ⟶ Top ) | 
						
							| 85 | 83 84 | syl | ⊢ ( ( ( 𝐺  ∈  CMnd  ∧  𝐺  ∈  TopMnd )  ∧  ( 𝑦  ∈  Fin  ∧  ¬  𝑧  ∈  𝑦 )  ∧  ( 𝑥  ∈  ( 𝐵  ↑m  𝑦 )  ↦  ( 𝐺  Σg  𝑥 ) )  ∈  ( ( ∏t ‘ ( 𝑦  ×  { 𝐽 } ) )  Cn  𝐽 ) )  →  ( ( 𝑦  ∪  { 𝑧 } )  ×  { 𝐽 } ) : ( 𝑦  ∪  { 𝑧 } ) ⟶ Top ) | 
						
							| 86 |  | ssun1 | ⊢ 𝑦  ⊆  ( 𝑦  ∪  { 𝑧 } ) | 
						
							| 87 | 86 | a1i | ⊢ ( ( ( 𝐺  ∈  CMnd  ∧  𝐺  ∈  TopMnd )  ∧  ( 𝑦  ∈  Fin  ∧  ¬  𝑧  ∈  𝑦 )  ∧  ( 𝑥  ∈  ( 𝐵  ↑m  𝑦 )  ↦  ( 𝐺  Σg  𝑥 ) )  ∈  ( ( ∏t ‘ ( 𝑦  ×  { 𝐽 } ) )  Cn  𝐽 ) )  →  𝑦  ⊆  ( 𝑦  ∪  { 𝑧 } ) ) | 
						
							| 88 |  | eqid | ⊢ ∪  ( ∏t ‘ ( ( 𝑦  ∪  { 𝑧 } )  ×  { 𝐽 } ) )  =  ∪  ( ∏t ‘ ( ( 𝑦  ∪  { 𝑧 } )  ×  { 𝐽 } ) ) | 
						
							| 89 |  | xpssres | ⊢ ( 𝑦  ⊆  ( 𝑦  ∪  { 𝑧 } )  →  ( ( ( 𝑦  ∪  { 𝑧 } )  ×  { 𝐽 } )  ↾  𝑦 )  =  ( 𝑦  ×  { 𝐽 } ) ) | 
						
							| 90 | 86 89 | ax-mp | ⊢ ( ( ( 𝑦  ∪  { 𝑧 } )  ×  { 𝐽 } )  ↾  𝑦 )  =  ( 𝑦  ×  { 𝐽 } ) | 
						
							| 91 | 90 | eqcomi | ⊢ ( 𝑦  ×  { 𝐽 } )  =  ( ( ( 𝑦  ∪  { 𝑧 } )  ×  { 𝐽 } )  ↾  𝑦 ) | 
						
							| 92 | 91 | fveq2i | ⊢ ( ∏t ‘ ( 𝑦  ×  { 𝐽 } ) )  =  ( ∏t ‘ ( ( ( 𝑦  ∪  { 𝑧 } )  ×  { 𝐽 } )  ↾  𝑦 ) ) | 
						
							| 93 | 88 76 92 | ptrescn | ⊢ ( ( ( 𝑦  ∪  { 𝑧 } )  ∈  Fin  ∧  ( ( 𝑦  ∪  { 𝑧 } )  ×  { 𝐽 } ) : ( 𝑦  ∪  { 𝑧 } ) ⟶ Top  ∧  𝑦  ⊆  ( 𝑦  ∪  { 𝑧 } ) )  →  ( 𝑤  ∈  ∪  ( ∏t ‘ ( ( 𝑦  ∪  { 𝑧 } )  ×  { 𝐽 } ) )  ↦  ( 𝑤  ↾  𝑦 ) )  ∈  ( ( ∏t ‘ ( ( 𝑦  ∪  { 𝑧 } )  ×  { 𝐽 } ) )  Cn  ( ∏t ‘ ( 𝑦  ×  { 𝐽 } ) ) ) ) | 
						
							| 94 | 61 85 87 93 | syl3anc | ⊢ ( ( ( 𝐺  ∈  CMnd  ∧  𝐺  ∈  TopMnd )  ∧  ( 𝑦  ∈  Fin  ∧  ¬  𝑧  ∈  𝑦 )  ∧  ( 𝑥  ∈  ( 𝐵  ↑m  𝑦 )  ↦  ( 𝐺  Σg  𝑥 ) )  ∈  ( ( ∏t ‘ ( 𝑦  ×  { 𝐽 } ) )  Cn  𝐽 ) )  →  ( 𝑤  ∈  ∪  ( ∏t ‘ ( ( 𝑦  ∪  { 𝑧 } )  ×  { 𝐽 } ) )  ↦  ( 𝑤  ↾  𝑦 ) )  ∈  ( ( ∏t ‘ ( ( 𝑦  ∪  { 𝑧 } )  ×  { 𝐽 } ) )  Cn  ( ∏t ‘ ( 𝑦  ×  { 𝐽 } ) ) ) ) | 
						
							| 95 | 81 94 | eqeltrd | ⊢ ( ( ( 𝐺  ∈  CMnd  ∧  𝐺  ∈  TopMnd )  ∧  ( 𝑦  ∈  Fin  ∧  ¬  𝑧  ∈  𝑦 )  ∧  ( 𝑥  ∈  ( 𝐵  ↑m  𝑦 )  ↦  ( 𝐺  Σg  𝑥 ) )  ∈  ( ( ∏t ‘ ( 𝑦  ×  { 𝐽 } ) )  Cn  𝐽 ) )  →  ( 𝑤  ∈  ( 𝐵  ↑m  ( 𝑦  ∪  { 𝑧 } ) )  ↦  ( 𝑤  ↾  𝑦 ) )  ∈  ( ( ∏t ‘ ( ( 𝑦  ∪  { 𝑧 } )  ×  { 𝐽 } ) )  Cn  ( ∏t ‘ ( 𝑦  ×  { 𝐽 } ) ) ) ) | 
						
							| 96 |  | eqid | ⊢ ( ∏t ‘ ( 𝑦  ×  { 𝐽 } ) )  =  ( ∏t ‘ ( 𝑦  ×  { 𝐽 } ) ) | 
						
							| 97 | 96 | pttoponconst | ⊢ ( ( 𝑦  ∈  Fin  ∧  𝐽  ∈  ( TopOn ‘ 𝐵 ) )  →  ( ∏t ‘ ( 𝑦  ×  { 𝐽 } ) )  ∈  ( TopOn ‘ ( 𝐵  ↑m  𝑦 ) ) ) | 
						
							| 98 | 58 75 97 | syl2anc | ⊢ ( ( ( 𝐺  ∈  CMnd  ∧  𝐺  ∈  TopMnd )  ∧  ( 𝑦  ∈  Fin  ∧  ¬  𝑧  ∈  𝑦 )  ∧  ( 𝑥  ∈  ( 𝐵  ↑m  𝑦 )  ↦  ( 𝐺  Σg  𝑥 ) )  ∈  ( ( ∏t ‘ ( 𝑦  ×  { 𝐽 } ) )  Cn  𝐽 ) )  →  ( ∏t ‘ ( 𝑦  ×  { 𝐽 } ) )  ∈  ( TopOn ‘ ( 𝐵  ↑m  𝑦 ) ) ) | 
						
							| 99 |  | simp3 | ⊢ ( ( ( 𝐺  ∈  CMnd  ∧  𝐺  ∈  TopMnd )  ∧  ( 𝑦  ∈  Fin  ∧  ¬  𝑧  ∈  𝑦 )  ∧  ( 𝑥  ∈  ( 𝐵  ↑m  𝑦 )  ↦  ( 𝐺  Σg  𝑥 ) )  ∈  ( ( ∏t ‘ ( 𝑦  ×  { 𝐽 } ) )  Cn  𝐽 ) )  →  ( 𝑥  ∈  ( 𝐵  ↑m  𝑦 )  ↦  ( 𝐺  Σg  𝑥 ) )  ∈  ( ( ∏t ‘ ( 𝑦  ×  { 𝐽 } ) )  Cn  𝐽 ) ) | 
						
							| 100 |  | oveq2 | ⊢ ( 𝑥  =  ( 𝑤  ↾  𝑦 )  →  ( 𝐺  Σg  𝑥 )  =  ( 𝐺  Σg  ( 𝑤  ↾  𝑦 ) ) ) | 
						
							| 101 | 78 95 98 99 100 | cnmpt11 | ⊢ ( ( ( 𝐺  ∈  CMnd  ∧  𝐺  ∈  TopMnd )  ∧  ( 𝑦  ∈  Fin  ∧  ¬  𝑧  ∈  𝑦 )  ∧  ( 𝑥  ∈  ( 𝐵  ↑m  𝑦 )  ↦  ( 𝐺  Σg  𝑥 ) )  ∈  ( ( ∏t ‘ ( 𝑦  ×  { 𝐽 } ) )  Cn  𝐽 ) )  →  ( 𝑤  ∈  ( 𝐵  ↑m  ( 𝑦  ∪  { 𝑧 } ) )  ↦  ( 𝐺  Σg  ( 𝑤  ↾  𝑦 ) ) )  ∈  ( ( ∏t ‘ ( ( 𝑦  ∪  { 𝑧 } )  ×  { 𝐽 } ) )  Cn  𝐽 ) ) | 
						
							| 102 | 64 | feqmptd | ⊢ ( ( ( ( 𝐺  ∈  CMnd  ∧  𝐺  ∈  TopMnd )  ∧  ( 𝑦  ∈  Fin  ∧  ¬  𝑧  ∈  𝑦 )  ∧  ( 𝑥  ∈  ( 𝐵  ↑m  𝑦 )  ↦  ( 𝐺  Σg  𝑥 ) )  ∈  ( ( ∏t ‘ ( 𝑦  ×  { 𝐽 } ) )  Cn  𝐽 ) )  ∧  𝑤  ∈  ( 𝐵  ↑m  ( 𝑦  ∪  { 𝑧 } ) ) )  →  𝑤  =  ( 𝑘  ∈  ( 𝑦  ∪  { 𝑧 } )  ↦  ( 𝑤 ‘ 𝑘 ) ) ) | 
						
							| 103 | 102 | reseq1d | ⊢ ( ( ( ( 𝐺  ∈  CMnd  ∧  𝐺  ∈  TopMnd )  ∧  ( 𝑦  ∈  Fin  ∧  ¬  𝑧  ∈  𝑦 )  ∧  ( 𝑥  ∈  ( 𝐵  ↑m  𝑦 )  ↦  ( 𝐺  Σg  𝑥 ) )  ∈  ( ( ∏t ‘ ( 𝑦  ×  { 𝐽 } ) )  Cn  𝐽 ) )  ∧  𝑤  ∈  ( 𝐵  ↑m  ( 𝑦  ∪  { 𝑧 } ) ) )  →  ( 𝑤  ↾  { 𝑧 } )  =  ( ( 𝑘  ∈  ( 𝑦  ∪  { 𝑧 } )  ↦  ( 𝑤 ‘ 𝑘 ) )  ↾  { 𝑧 } ) ) | 
						
							| 104 |  | ssun2 | ⊢ { 𝑧 }  ⊆  ( 𝑦  ∪  { 𝑧 } ) | 
						
							| 105 |  | resmpt | ⊢ ( { 𝑧 }  ⊆  ( 𝑦  ∪  { 𝑧 } )  →  ( ( 𝑘  ∈  ( 𝑦  ∪  { 𝑧 } )  ↦  ( 𝑤 ‘ 𝑘 ) )  ↾  { 𝑧 } )  =  ( 𝑘  ∈  { 𝑧 }  ↦  ( 𝑤 ‘ 𝑘 ) ) ) | 
						
							| 106 | 104 105 | ax-mp | ⊢ ( ( 𝑘  ∈  ( 𝑦  ∪  { 𝑧 } )  ↦  ( 𝑤 ‘ 𝑘 ) )  ↾  { 𝑧 } )  =  ( 𝑘  ∈  { 𝑧 }  ↦  ( 𝑤 ‘ 𝑘 ) ) | 
						
							| 107 | 103 106 | eqtrdi | ⊢ ( ( ( ( 𝐺  ∈  CMnd  ∧  𝐺  ∈  TopMnd )  ∧  ( 𝑦  ∈  Fin  ∧  ¬  𝑧  ∈  𝑦 )  ∧  ( 𝑥  ∈  ( 𝐵  ↑m  𝑦 )  ↦  ( 𝐺  Σg  𝑥 ) )  ∈  ( ( ∏t ‘ ( 𝑦  ×  { 𝐽 } ) )  Cn  𝐽 ) )  ∧  𝑤  ∈  ( 𝐵  ↑m  ( 𝑦  ∪  { 𝑧 } ) ) )  →  ( 𝑤  ↾  { 𝑧 } )  =  ( 𝑘  ∈  { 𝑧 }  ↦  ( 𝑤 ‘ 𝑘 ) ) ) | 
						
							| 108 | 107 | oveq2d | ⊢ ( ( ( ( 𝐺  ∈  CMnd  ∧  𝐺  ∈  TopMnd )  ∧  ( 𝑦  ∈  Fin  ∧  ¬  𝑧  ∈  𝑦 )  ∧  ( 𝑥  ∈  ( 𝐵  ↑m  𝑦 )  ↦  ( 𝐺  Σg  𝑥 ) )  ∈  ( ( ∏t ‘ ( 𝑦  ×  { 𝐽 } ) )  Cn  𝐽 ) )  ∧  𝑤  ∈  ( 𝐵  ↑m  ( 𝑦  ∪  { 𝑧 } ) ) )  →  ( 𝐺  Σg  ( 𝑤  ↾  { 𝑧 } ) )  =  ( 𝐺  Σg  ( 𝑘  ∈  { 𝑧 }  ↦  ( 𝑤 ‘ 𝑘 ) ) ) ) | 
						
							| 109 |  | cmnmnd | ⊢ ( 𝐺  ∈  CMnd  →  𝐺  ∈  Mnd ) | 
						
							| 110 | 57 109 | syl | ⊢ ( ( ( ( 𝐺  ∈  CMnd  ∧  𝐺  ∈  TopMnd )  ∧  ( 𝑦  ∈  Fin  ∧  ¬  𝑧  ∈  𝑦 )  ∧  ( 𝑥  ∈  ( 𝐵  ↑m  𝑦 )  ↦  ( 𝐺  Σg  𝑥 ) )  ∈  ( ( ∏t ‘ ( 𝑦  ×  { 𝐽 } ) )  Cn  𝐽 ) )  ∧  𝑤  ∈  ( 𝐵  ↑m  ( 𝑦  ∪  { 𝑧 } ) ) )  →  𝐺  ∈  Mnd ) | 
						
							| 111 |  | vex | ⊢ 𝑧  ∈  V | 
						
							| 112 | 111 | a1i | ⊢ ( ( ( ( 𝐺  ∈  CMnd  ∧  𝐺  ∈  TopMnd )  ∧  ( 𝑦  ∈  Fin  ∧  ¬  𝑧  ∈  𝑦 )  ∧  ( 𝑥  ∈  ( 𝐵  ↑m  𝑦 )  ↦  ( 𝐺  Σg  𝑥 ) )  ∈  ( ( ∏t ‘ ( 𝑦  ×  { 𝐽 } ) )  Cn  𝐽 ) )  ∧  𝑤  ∈  ( 𝐵  ↑m  ( 𝑦  ∪  { 𝑧 } ) ) )  →  𝑧  ∈  V ) | 
						
							| 113 |  | vsnid | ⊢ 𝑧  ∈  { 𝑧 } | 
						
							| 114 |  | elun2 | ⊢ ( 𝑧  ∈  { 𝑧 }  →  𝑧  ∈  ( 𝑦  ∪  { 𝑧 } ) ) | 
						
							| 115 | 113 114 | mp1i | ⊢ ( ( ( ( 𝐺  ∈  CMnd  ∧  𝐺  ∈  TopMnd )  ∧  ( 𝑦  ∈  Fin  ∧  ¬  𝑧  ∈  𝑦 )  ∧  ( 𝑥  ∈  ( 𝐵  ↑m  𝑦 )  ↦  ( 𝐺  Σg  𝑥 ) )  ∈  ( ( ∏t ‘ ( 𝑦  ×  { 𝐽 } ) )  Cn  𝐽 ) )  ∧  𝑤  ∈  ( 𝐵  ↑m  ( 𝑦  ∪  { 𝑧 } ) ) )  →  𝑧  ∈  ( 𝑦  ∪  { 𝑧 } ) ) | 
						
							| 116 | 64 115 | ffvelcdmd | ⊢ ( ( ( ( 𝐺  ∈  CMnd  ∧  𝐺  ∈  TopMnd )  ∧  ( 𝑦  ∈  Fin  ∧  ¬  𝑧  ∈  𝑦 )  ∧  ( 𝑥  ∈  ( 𝐵  ↑m  𝑦 )  ↦  ( 𝐺  Σg  𝑥 ) )  ∈  ( ( ∏t ‘ ( 𝑦  ×  { 𝐽 } ) )  Cn  𝐽 ) )  ∧  𝑤  ∈  ( 𝐵  ↑m  ( 𝑦  ∪  { 𝑧 } ) ) )  →  ( 𝑤 ‘ 𝑧 )  ∈  𝐵 ) | 
						
							| 117 |  | fveq2 | ⊢ ( 𝑘  =  𝑧  →  ( 𝑤 ‘ 𝑘 )  =  ( 𝑤 ‘ 𝑧 ) ) | 
						
							| 118 | 2 117 | gsumsn | ⊢ ( ( 𝐺  ∈  Mnd  ∧  𝑧  ∈  V  ∧  ( 𝑤 ‘ 𝑧 )  ∈  𝐵 )  →  ( 𝐺  Σg  ( 𝑘  ∈  { 𝑧 }  ↦  ( 𝑤 ‘ 𝑘 ) ) )  =  ( 𝑤 ‘ 𝑧 ) ) | 
						
							| 119 | 110 112 116 118 | syl3anc | ⊢ ( ( ( ( 𝐺  ∈  CMnd  ∧  𝐺  ∈  TopMnd )  ∧  ( 𝑦  ∈  Fin  ∧  ¬  𝑧  ∈  𝑦 )  ∧  ( 𝑥  ∈  ( 𝐵  ↑m  𝑦 )  ↦  ( 𝐺  Σg  𝑥 ) )  ∈  ( ( ∏t ‘ ( 𝑦  ×  { 𝐽 } ) )  Cn  𝐽 ) )  ∧  𝑤  ∈  ( 𝐵  ↑m  ( 𝑦  ∪  { 𝑧 } ) ) )  →  ( 𝐺  Σg  ( 𝑘  ∈  { 𝑧 }  ↦  ( 𝑤 ‘ 𝑘 ) ) )  =  ( 𝑤 ‘ 𝑧 ) ) | 
						
							| 120 | 108 119 | eqtrd | ⊢ ( ( ( ( 𝐺  ∈  CMnd  ∧  𝐺  ∈  TopMnd )  ∧  ( 𝑦  ∈  Fin  ∧  ¬  𝑧  ∈  𝑦 )  ∧  ( 𝑥  ∈  ( 𝐵  ↑m  𝑦 )  ↦  ( 𝐺  Σg  𝑥 ) )  ∈  ( ( ∏t ‘ ( 𝑦  ×  { 𝐽 } ) )  Cn  𝐽 ) )  ∧  𝑤  ∈  ( 𝐵  ↑m  ( 𝑦  ∪  { 𝑧 } ) ) )  →  ( 𝐺  Σg  ( 𝑤  ↾  { 𝑧 } ) )  =  ( 𝑤 ‘ 𝑧 ) ) | 
						
							| 121 | 120 | mpteq2dva | ⊢ ( ( ( 𝐺  ∈  CMnd  ∧  𝐺  ∈  TopMnd )  ∧  ( 𝑦  ∈  Fin  ∧  ¬  𝑧  ∈  𝑦 )  ∧  ( 𝑥  ∈  ( 𝐵  ↑m  𝑦 )  ↦  ( 𝐺  Σg  𝑥 ) )  ∈  ( ( ∏t ‘ ( 𝑦  ×  { 𝐽 } ) )  Cn  𝐽 ) )  →  ( 𝑤  ∈  ( 𝐵  ↑m  ( 𝑦  ∪  { 𝑧 } ) )  ↦  ( 𝐺  Σg  ( 𝑤  ↾  { 𝑧 } ) ) )  =  ( 𝑤  ∈  ( 𝐵  ↑m  ( 𝑦  ∪  { 𝑧 } ) )  ↦  ( 𝑤 ‘ 𝑧 ) ) ) | 
						
							| 122 | 80 | mpteq1d | ⊢ ( ( ( 𝐺  ∈  CMnd  ∧  𝐺  ∈  TopMnd )  ∧  ( 𝑦  ∈  Fin  ∧  ¬  𝑧  ∈  𝑦 )  ∧  ( 𝑥  ∈  ( 𝐵  ↑m  𝑦 )  ↦  ( 𝐺  Σg  𝑥 ) )  ∈  ( ( ∏t ‘ ( 𝑦  ×  { 𝐽 } ) )  Cn  𝐽 ) )  →  ( 𝑤  ∈  ( 𝐵  ↑m  ( 𝑦  ∪  { 𝑧 } ) )  ↦  ( 𝑤 ‘ 𝑧 ) )  =  ( 𝑤  ∈  ∪  ( ∏t ‘ ( ( 𝑦  ∪  { 𝑧 } )  ×  { 𝐽 } ) )  ↦  ( 𝑤 ‘ 𝑧 ) ) ) | 
						
							| 123 | 113 114 | mp1i | ⊢ ( ( ( 𝐺  ∈  CMnd  ∧  𝐺  ∈  TopMnd )  ∧  ( 𝑦  ∈  Fin  ∧  ¬  𝑧  ∈  𝑦 )  ∧  ( 𝑥  ∈  ( 𝐵  ↑m  𝑦 )  ↦  ( 𝐺  Σg  𝑥 ) )  ∈  ( ( ∏t ‘ ( 𝑦  ×  { 𝐽 } ) )  Cn  𝐽 ) )  →  𝑧  ∈  ( 𝑦  ∪  { 𝑧 } ) ) | 
						
							| 124 | 88 76 | ptpjcn | ⊢ ( ( ( 𝑦  ∪  { 𝑧 } )  ∈  Fin  ∧  ( ( 𝑦  ∪  { 𝑧 } )  ×  { 𝐽 } ) : ( 𝑦  ∪  { 𝑧 } ) ⟶ Top  ∧  𝑧  ∈  ( 𝑦  ∪  { 𝑧 } ) )  →  ( 𝑤  ∈  ∪  ( ∏t ‘ ( ( 𝑦  ∪  { 𝑧 } )  ×  { 𝐽 } ) )  ↦  ( 𝑤 ‘ 𝑧 ) )  ∈  ( ( ∏t ‘ ( ( 𝑦  ∪  { 𝑧 } )  ×  { 𝐽 } ) )  Cn  ( ( ( 𝑦  ∪  { 𝑧 } )  ×  { 𝐽 } ) ‘ 𝑧 ) ) ) | 
						
							| 125 | 61 85 123 124 | syl3anc | ⊢ ( ( ( 𝐺  ∈  CMnd  ∧  𝐺  ∈  TopMnd )  ∧  ( 𝑦  ∈  Fin  ∧  ¬  𝑧  ∈  𝑦 )  ∧  ( 𝑥  ∈  ( 𝐵  ↑m  𝑦 )  ↦  ( 𝐺  Σg  𝑥 ) )  ∈  ( ( ∏t ‘ ( 𝑦  ×  { 𝐽 } ) )  Cn  𝐽 ) )  →  ( 𝑤  ∈  ∪  ( ∏t ‘ ( ( 𝑦  ∪  { 𝑧 } )  ×  { 𝐽 } ) )  ↦  ( 𝑤 ‘ 𝑧 ) )  ∈  ( ( ∏t ‘ ( ( 𝑦  ∪  { 𝑧 } )  ×  { 𝐽 } ) )  Cn  ( ( ( 𝑦  ∪  { 𝑧 } )  ×  { 𝐽 } ) ‘ 𝑧 ) ) ) | 
						
							| 126 | 122 125 | eqeltrd | ⊢ ( ( ( 𝐺  ∈  CMnd  ∧  𝐺  ∈  TopMnd )  ∧  ( 𝑦  ∈  Fin  ∧  ¬  𝑧  ∈  𝑦 )  ∧  ( 𝑥  ∈  ( 𝐵  ↑m  𝑦 )  ↦  ( 𝐺  Σg  𝑥 ) )  ∈  ( ( ∏t ‘ ( 𝑦  ×  { 𝐽 } ) )  Cn  𝐽 ) )  →  ( 𝑤  ∈  ( 𝐵  ↑m  ( 𝑦  ∪  { 𝑧 } ) )  ↦  ( 𝑤 ‘ 𝑧 ) )  ∈  ( ( ∏t ‘ ( ( 𝑦  ∪  { 𝑧 } )  ×  { 𝐽 } ) )  Cn  ( ( ( 𝑦  ∪  { 𝑧 } )  ×  { 𝐽 } ) ‘ 𝑧 ) ) ) | 
						
							| 127 |  | fvconst2g | ⊢ ( ( 𝐽  ∈  Top  ∧  𝑧  ∈  ( 𝑦  ∪  { 𝑧 } ) )  →  ( ( ( 𝑦  ∪  { 𝑧 } )  ×  { 𝐽 } ) ‘ 𝑧 )  =  𝐽 ) | 
						
							| 128 | 83 123 127 | syl2anc | ⊢ ( ( ( 𝐺  ∈  CMnd  ∧  𝐺  ∈  TopMnd )  ∧  ( 𝑦  ∈  Fin  ∧  ¬  𝑧  ∈  𝑦 )  ∧  ( 𝑥  ∈  ( 𝐵  ↑m  𝑦 )  ↦  ( 𝐺  Σg  𝑥 ) )  ∈  ( ( ∏t ‘ ( 𝑦  ×  { 𝐽 } ) )  Cn  𝐽 ) )  →  ( ( ( 𝑦  ∪  { 𝑧 } )  ×  { 𝐽 } ) ‘ 𝑧 )  =  𝐽 ) | 
						
							| 129 | 128 | oveq2d | ⊢ ( ( ( 𝐺  ∈  CMnd  ∧  𝐺  ∈  TopMnd )  ∧  ( 𝑦  ∈  Fin  ∧  ¬  𝑧  ∈  𝑦 )  ∧  ( 𝑥  ∈  ( 𝐵  ↑m  𝑦 )  ↦  ( 𝐺  Σg  𝑥 ) )  ∈  ( ( ∏t ‘ ( 𝑦  ×  { 𝐽 } ) )  Cn  𝐽 ) )  →  ( ( ∏t ‘ ( ( 𝑦  ∪  { 𝑧 } )  ×  { 𝐽 } ) )  Cn  ( ( ( 𝑦  ∪  { 𝑧 } )  ×  { 𝐽 } ) ‘ 𝑧 ) )  =  ( ( ∏t ‘ ( ( 𝑦  ∪  { 𝑧 } )  ×  { 𝐽 } ) )  Cn  𝐽 ) ) | 
						
							| 130 | 126 129 | eleqtrd | ⊢ ( ( ( 𝐺  ∈  CMnd  ∧  𝐺  ∈  TopMnd )  ∧  ( 𝑦  ∈  Fin  ∧  ¬  𝑧  ∈  𝑦 )  ∧  ( 𝑥  ∈  ( 𝐵  ↑m  𝑦 )  ↦  ( 𝐺  Σg  𝑥 ) )  ∈  ( ( ∏t ‘ ( 𝑦  ×  { 𝐽 } ) )  Cn  𝐽 ) )  →  ( 𝑤  ∈  ( 𝐵  ↑m  ( 𝑦  ∪  { 𝑧 } ) )  ↦  ( 𝑤 ‘ 𝑧 ) )  ∈  ( ( ∏t ‘ ( ( 𝑦  ∪  { 𝑧 } )  ×  { 𝐽 } ) )  Cn  𝐽 ) ) | 
						
							| 131 | 121 130 | eqeltrd | ⊢ ( ( ( 𝐺  ∈  CMnd  ∧  𝐺  ∈  TopMnd )  ∧  ( 𝑦  ∈  Fin  ∧  ¬  𝑧  ∈  𝑦 )  ∧  ( 𝑥  ∈  ( 𝐵  ↑m  𝑦 )  ↦  ( 𝐺  Σg  𝑥 ) )  ∈  ( ( ∏t ‘ ( 𝑦  ×  { 𝐽 } ) )  Cn  𝐽 ) )  →  ( 𝑤  ∈  ( 𝐵  ↑m  ( 𝑦  ∪  { 𝑧 } ) )  ↦  ( 𝐺  Σg  ( 𝑤  ↾  { 𝑧 } ) ) )  ∈  ( ( ∏t ‘ ( ( 𝑦  ∪  { 𝑧 } )  ×  { 𝐽 } ) )  Cn  𝐽 ) ) | 
						
							| 132 | 1 56 74 78 101 131 | cnmpt1plusg | ⊢ ( ( ( 𝐺  ∈  CMnd  ∧  𝐺  ∈  TopMnd )  ∧  ( 𝑦  ∈  Fin  ∧  ¬  𝑧  ∈  𝑦 )  ∧  ( 𝑥  ∈  ( 𝐵  ↑m  𝑦 )  ↦  ( 𝐺  Σg  𝑥 ) )  ∈  ( ( ∏t ‘ ( 𝑦  ×  { 𝐽 } ) )  Cn  𝐽 ) )  →  ( 𝑤  ∈  ( 𝐵  ↑m  ( 𝑦  ∪  { 𝑧 } ) )  ↦  ( ( 𝐺  Σg  ( 𝑤  ↾  𝑦 ) ) ( +g ‘ 𝐺 ) ( 𝐺  Σg  ( 𝑤  ↾  { 𝑧 } ) ) ) )  ∈  ( ( ∏t ‘ ( ( 𝑦  ∪  { 𝑧 } )  ×  { 𝐽 } ) )  Cn  𝐽 ) ) | 
						
							| 133 | 73 132 | eqeltrd | ⊢ ( ( ( 𝐺  ∈  CMnd  ∧  𝐺  ∈  TopMnd )  ∧  ( 𝑦  ∈  Fin  ∧  ¬  𝑧  ∈  𝑦 )  ∧  ( 𝑥  ∈  ( 𝐵  ↑m  𝑦 )  ↦  ( 𝐺  Σg  𝑥 ) )  ∈  ( ( ∏t ‘ ( 𝑦  ×  { 𝐽 } ) )  Cn  𝐽 ) )  →  ( 𝑥  ∈  ( 𝐵  ↑m  ( 𝑦  ∪  { 𝑧 } ) )  ↦  ( 𝐺  Σg  𝑥 ) )  ∈  ( ( ∏t ‘ ( ( 𝑦  ∪  { 𝑧 } )  ×  { 𝐽 } ) )  Cn  𝐽 ) ) | 
						
							| 134 | 133 | 3expia | ⊢ ( ( ( 𝐺  ∈  CMnd  ∧  𝐺  ∈  TopMnd )  ∧  ( 𝑦  ∈  Fin  ∧  ¬  𝑧  ∈  𝑦 ) )  →  ( ( 𝑥  ∈  ( 𝐵  ↑m  𝑦 )  ↦  ( 𝐺  Σg  𝑥 ) )  ∈  ( ( ∏t ‘ ( 𝑦  ×  { 𝐽 } ) )  Cn  𝐽 )  →  ( 𝑥  ∈  ( 𝐵  ↑m  ( 𝑦  ∪  { 𝑧 } ) )  ↦  ( 𝐺  Σg  𝑥 ) )  ∈  ( ( ∏t ‘ ( ( 𝑦  ∪  { 𝑧 } )  ×  { 𝐽 } ) )  Cn  𝐽 ) ) ) | 
						
							| 135 | 134 | expcom | ⊢ ( ( 𝑦  ∈  Fin  ∧  ¬  𝑧  ∈  𝑦 )  →  ( ( 𝐺  ∈  CMnd  ∧  𝐺  ∈  TopMnd )  →  ( ( 𝑥  ∈  ( 𝐵  ↑m  𝑦 )  ↦  ( 𝐺  Σg  𝑥 ) )  ∈  ( ( ∏t ‘ ( 𝑦  ×  { 𝐽 } ) )  Cn  𝐽 )  →  ( 𝑥  ∈  ( 𝐵  ↑m  ( 𝑦  ∪  { 𝑧 } ) )  ↦  ( 𝐺  Σg  𝑥 ) )  ∈  ( ( ∏t ‘ ( ( 𝑦  ∪  { 𝑧 } )  ×  { 𝐽 } ) )  Cn  𝐽 ) ) ) ) | 
						
							| 136 | 135 | a2d | ⊢ ( ( 𝑦  ∈  Fin  ∧  ¬  𝑧  ∈  𝑦 )  →  ( ( ( 𝐺  ∈  CMnd  ∧  𝐺  ∈  TopMnd )  →  ( 𝑥  ∈  ( 𝐵  ↑m  𝑦 )  ↦  ( 𝐺  Σg  𝑥 ) )  ∈  ( ( ∏t ‘ ( 𝑦  ×  { 𝐽 } ) )  Cn  𝐽 ) )  →  ( ( 𝐺  ∈  CMnd  ∧  𝐺  ∈  TopMnd )  →  ( 𝑥  ∈  ( 𝐵  ↑m  ( 𝑦  ∪  { 𝑧 } ) )  ↦  ( 𝐺  Σg  𝑥 ) )  ∈  ( ( ∏t ‘ ( ( 𝑦  ∪  { 𝑧 } )  ×  { 𝐽 } ) )  Cn  𝐽 ) ) ) ) | 
						
							| 137 | 11 18 25 32 53 136 | findcard2s | ⊢ ( 𝐴  ∈  Fin  →  ( ( 𝐺  ∈  CMnd  ∧  𝐺  ∈  TopMnd )  →  ( 𝑥  ∈  ( 𝐵  ↑m  𝐴 )  ↦  ( 𝐺  Σg  𝑥 ) )  ∈  ( ( ∏t ‘ ( 𝐴  ×  { 𝐽 } ) )  Cn  𝐽 ) ) ) | 
						
							| 138 | 137 | com12 | ⊢ ( ( 𝐺  ∈  CMnd  ∧  𝐺  ∈  TopMnd )  →  ( 𝐴  ∈  Fin  →  ( 𝑥  ∈  ( 𝐵  ↑m  𝐴 )  ↦  ( 𝐺  Σg  𝑥 ) )  ∈  ( ( ∏t ‘ ( 𝐴  ×  { 𝐽 } ) )  Cn  𝐽 ) ) ) | 
						
							| 139 | 138 | 3impia | ⊢ ( ( 𝐺  ∈  CMnd  ∧  𝐺  ∈  TopMnd  ∧  𝐴  ∈  Fin )  →  ( 𝑥  ∈  ( 𝐵  ↑m  𝐴 )  ↦  ( 𝐺  Σg  𝑥 ) )  ∈  ( ( ∏t ‘ ( 𝐴  ×  { 𝐽 } ) )  Cn  𝐽 ) ) | 
						
							| 140 | 42 82 | syl | ⊢ ( 𝐺  ∈  TopMnd  →  𝐽  ∈  Top ) | 
						
							| 141 |  | xkopt | ⊢ ( ( 𝐽  ∈  Top  ∧  𝐴  ∈  Fin )  →  ( 𝐽  ↑ko  𝒫  𝐴 )  =  ( ∏t ‘ ( 𝐴  ×  { 𝐽 } ) ) ) | 
						
							| 142 | 140 141 | sylan | ⊢ ( ( 𝐺  ∈  TopMnd  ∧  𝐴  ∈  Fin )  →  ( 𝐽  ↑ko  𝒫  𝐴 )  =  ( ∏t ‘ ( 𝐴  ×  { 𝐽 } ) ) ) | 
						
							| 143 | 142 | 3adant1 | ⊢ ( ( 𝐺  ∈  CMnd  ∧  𝐺  ∈  TopMnd  ∧  𝐴  ∈  Fin )  →  ( 𝐽  ↑ko  𝒫  𝐴 )  =  ( ∏t ‘ ( 𝐴  ×  { 𝐽 } ) ) ) | 
						
							| 144 | 143 | oveq1d | ⊢ ( ( 𝐺  ∈  CMnd  ∧  𝐺  ∈  TopMnd  ∧  𝐴  ∈  Fin )  →  ( ( 𝐽  ↑ko  𝒫  𝐴 )  Cn  𝐽 )  =  ( ( ∏t ‘ ( 𝐴  ×  { 𝐽 } ) )  Cn  𝐽 ) ) | 
						
							| 145 | 139 144 | eleqtrrd | ⊢ ( ( 𝐺  ∈  CMnd  ∧  𝐺  ∈  TopMnd  ∧  𝐴  ∈  Fin )  →  ( 𝑥  ∈  ( 𝐵  ↑m  𝐴 )  ↦  ( 𝐺  Σg  𝑥 ) )  ∈  ( ( 𝐽  ↑ko  𝒫  𝐴 )  Cn  𝐽 ) ) |