| Step | Hyp | Ref | Expression | 
						
							| 1 |  | tmdgsum.j | ⊢ 𝐽  =  ( TopOpen ‘ 𝐺 ) | 
						
							| 2 |  | tmdgsum.b | ⊢ 𝐵  =  ( Base ‘ 𝐺 ) | 
						
							| 3 |  | tmdgsum2.t | ⊢  ·   =  ( .g ‘ 𝐺 ) | 
						
							| 4 |  | tmdgsum2.1 | ⊢ ( 𝜑  →  𝐺  ∈  CMnd ) | 
						
							| 5 |  | tmdgsum2.2 | ⊢ ( 𝜑  →  𝐺  ∈  TopMnd ) | 
						
							| 6 |  | tmdgsum2.a | ⊢ ( 𝜑  →  𝐴  ∈  Fin ) | 
						
							| 7 |  | tmdgsum2.u | ⊢ ( 𝜑  →  𝑈  ∈  𝐽 ) | 
						
							| 8 |  | tmdgsum2.x | ⊢ ( 𝜑  →  𝑋  ∈  𝐵 ) | 
						
							| 9 |  | tmdgsum2.3 | ⊢ ( 𝜑  →  ( ( ♯ ‘ 𝐴 )  ·  𝑋 )  ∈  𝑈 ) | 
						
							| 10 |  | eqid | ⊢ ( 𝑓  ∈  ( 𝐵  ↑m  𝐴 )  ↦  ( 𝐺  Σg  𝑓 ) )  =  ( 𝑓  ∈  ( 𝐵  ↑m  𝐴 )  ↦  ( 𝐺  Σg  𝑓 ) ) | 
						
							| 11 | 10 | mptpreima | ⊢ ( ◡ ( 𝑓  ∈  ( 𝐵  ↑m  𝐴 )  ↦  ( 𝐺  Σg  𝑓 ) )  “  𝑈 )  =  { 𝑓  ∈  ( 𝐵  ↑m  𝐴 )  ∣  ( 𝐺  Σg  𝑓 )  ∈  𝑈 } | 
						
							| 12 | 1 2 | tmdgsum | ⊢ ( ( 𝐺  ∈  CMnd  ∧  𝐺  ∈  TopMnd  ∧  𝐴  ∈  Fin )  →  ( 𝑓  ∈  ( 𝐵  ↑m  𝐴 )  ↦  ( 𝐺  Σg  𝑓 ) )  ∈  ( ( 𝐽  ↑ko  𝒫  𝐴 )  Cn  𝐽 ) ) | 
						
							| 13 | 4 5 6 12 | syl3anc | ⊢ ( 𝜑  →  ( 𝑓  ∈  ( 𝐵  ↑m  𝐴 )  ↦  ( 𝐺  Σg  𝑓 ) )  ∈  ( ( 𝐽  ↑ko  𝒫  𝐴 )  Cn  𝐽 ) ) | 
						
							| 14 |  | cnima | ⊢ ( ( ( 𝑓  ∈  ( 𝐵  ↑m  𝐴 )  ↦  ( 𝐺  Σg  𝑓 ) )  ∈  ( ( 𝐽  ↑ko  𝒫  𝐴 )  Cn  𝐽 )  ∧  𝑈  ∈  𝐽 )  →  ( ◡ ( 𝑓  ∈  ( 𝐵  ↑m  𝐴 )  ↦  ( 𝐺  Σg  𝑓 ) )  “  𝑈 )  ∈  ( 𝐽  ↑ko  𝒫  𝐴 ) ) | 
						
							| 15 | 13 7 14 | syl2anc | ⊢ ( 𝜑  →  ( ◡ ( 𝑓  ∈  ( 𝐵  ↑m  𝐴 )  ↦  ( 𝐺  Σg  𝑓 ) )  “  𝑈 )  ∈  ( 𝐽  ↑ko  𝒫  𝐴 ) ) | 
						
							| 16 | 11 15 | eqeltrrid | ⊢ ( 𝜑  →  { 𝑓  ∈  ( 𝐵  ↑m  𝐴 )  ∣  ( 𝐺  Σg  𝑓 )  ∈  𝑈 }  ∈  ( 𝐽  ↑ko  𝒫  𝐴 ) ) | 
						
							| 17 | 1 2 | tmdtopon | ⊢ ( 𝐺  ∈  TopMnd  →  𝐽  ∈  ( TopOn ‘ 𝐵 ) ) | 
						
							| 18 |  | topontop | ⊢ ( 𝐽  ∈  ( TopOn ‘ 𝐵 )  →  𝐽  ∈  Top ) | 
						
							| 19 | 5 17 18 | 3syl | ⊢ ( 𝜑  →  𝐽  ∈  Top ) | 
						
							| 20 |  | xkopt | ⊢ ( ( 𝐽  ∈  Top  ∧  𝐴  ∈  Fin )  →  ( 𝐽  ↑ko  𝒫  𝐴 )  =  ( ∏t ‘ ( 𝐴  ×  { 𝐽 } ) ) ) | 
						
							| 21 | 19 6 20 | syl2anc | ⊢ ( 𝜑  →  ( 𝐽  ↑ko  𝒫  𝐴 )  =  ( ∏t ‘ ( 𝐴  ×  { 𝐽 } ) ) ) | 
						
							| 22 |  | fnconstg | ⊢ ( 𝐽  ∈  ( TopOn ‘ 𝐵 )  →  ( 𝐴  ×  { 𝐽 } )  Fn  𝐴 ) | 
						
							| 23 | 5 17 22 | 3syl | ⊢ ( 𝜑  →  ( 𝐴  ×  { 𝐽 } )  Fn  𝐴 ) | 
						
							| 24 |  | eqid | ⊢ { 𝑥  ∣  ∃ 𝑔 ( ( 𝑔  Fn  𝐴  ∧  ∀ 𝑦  ∈  𝐴 ( 𝑔 ‘ 𝑦 )  ∈  ( ( 𝐴  ×  { 𝐽 } ) ‘ 𝑦 )  ∧  ∃ 𝑧  ∈  Fin ∀ 𝑦  ∈  ( 𝐴  ∖  𝑧 ) ( 𝑔 ‘ 𝑦 )  =  ∪  ( ( 𝐴  ×  { 𝐽 } ) ‘ 𝑦 ) )  ∧  𝑥  =  X 𝑦  ∈  𝐴 ( 𝑔 ‘ 𝑦 ) ) }  =  { 𝑥  ∣  ∃ 𝑔 ( ( 𝑔  Fn  𝐴  ∧  ∀ 𝑦  ∈  𝐴 ( 𝑔 ‘ 𝑦 )  ∈  ( ( 𝐴  ×  { 𝐽 } ) ‘ 𝑦 )  ∧  ∃ 𝑧  ∈  Fin ∀ 𝑦  ∈  ( 𝐴  ∖  𝑧 ) ( 𝑔 ‘ 𝑦 )  =  ∪  ( ( 𝐴  ×  { 𝐽 } ) ‘ 𝑦 ) )  ∧  𝑥  =  X 𝑦  ∈  𝐴 ( 𝑔 ‘ 𝑦 ) ) } | 
						
							| 25 | 24 | ptval | ⊢ ( ( 𝐴  ∈  Fin  ∧  ( 𝐴  ×  { 𝐽 } )  Fn  𝐴 )  →  ( ∏t ‘ ( 𝐴  ×  { 𝐽 } ) )  =  ( topGen ‘ { 𝑥  ∣  ∃ 𝑔 ( ( 𝑔  Fn  𝐴  ∧  ∀ 𝑦  ∈  𝐴 ( 𝑔 ‘ 𝑦 )  ∈  ( ( 𝐴  ×  { 𝐽 } ) ‘ 𝑦 )  ∧  ∃ 𝑧  ∈  Fin ∀ 𝑦  ∈  ( 𝐴  ∖  𝑧 ) ( 𝑔 ‘ 𝑦 )  =  ∪  ( ( 𝐴  ×  { 𝐽 } ) ‘ 𝑦 ) )  ∧  𝑥  =  X 𝑦  ∈  𝐴 ( 𝑔 ‘ 𝑦 ) ) } ) ) | 
						
							| 26 | 6 23 25 | syl2anc | ⊢ ( 𝜑  →  ( ∏t ‘ ( 𝐴  ×  { 𝐽 } ) )  =  ( topGen ‘ { 𝑥  ∣  ∃ 𝑔 ( ( 𝑔  Fn  𝐴  ∧  ∀ 𝑦  ∈  𝐴 ( 𝑔 ‘ 𝑦 )  ∈  ( ( 𝐴  ×  { 𝐽 } ) ‘ 𝑦 )  ∧  ∃ 𝑧  ∈  Fin ∀ 𝑦  ∈  ( 𝐴  ∖  𝑧 ) ( 𝑔 ‘ 𝑦 )  =  ∪  ( ( 𝐴  ×  { 𝐽 } ) ‘ 𝑦 ) )  ∧  𝑥  =  X 𝑦  ∈  𝐴 ( 𝑔 ‘ 𝑦 ) ) } ) ) | 
						
							| 27 | 21 26 | eqtrd | ⊢ ( 𝜑  →  ( 𝐽  ↑ko  𝒫  𝐴 )  =  ( topGen ‘ { 𝑥  ∣  ∃ 𝑔 ( ( 𝑔  Fn  𝐴  ∧  ∀ 𝑦  ∈  𝐴 ( 𝑔 ‘ 𝑦 )  ∈  ( ( 𝐴  ×  { 𝐽 } ) ‘ 𝑦 )  ∧  ∃ 𝑧  ∈  Fin ∀ 𝑦  ∈  ( 𝐴  ∖  𝑧 ) ( 𝑔 ‘ 𝑦 )  =  ∪  ( ( 𝐴  ×  { 𝐽 } ) ‘ 𝑦 ) )  ∧  𝑥  =  X 𝑦  ∈  𝐴 ( 𝑔 ‘ 𝑦 ) ) } ) ) | 
						
							| 28 | 16 27 | eleqtrd | ⊢ ( 𝜑  →  { 𝑓  ∈  ( 𝐵  ↑m  𝐴 )  ∣  ( 𝐺  Σg  𝑓 )  ∈  𝑈 }  ∈  ( topGen ‘ { 𝑥  ∣  ∃ 𝑔 ( ( 𝑔  Fn  𝐴  ∧  ∀ 𝑦  ∈  𝐴 ( 𝑔 ‘ 𝑦 )  ∈  ( ( 𝐴  ×  { 𝐽 } ) ‘ 𝑦 )  ∧  ∃ 𝑧  ∈  Fin ∀ 𝑦  ∈  ( 𝐴  ∖  𝑧 ) ( 𝑔 ‘ 𝑦 )  =  ∪  ( ( 𝐴  ×  { 𝐽 } ) ‘ 𝑦 ) )  ∧  𝑥  =  X 𝑦  ∈  𝐴 ( 𝑔 ‘ 𝑦 ) ) } ) ) | 
						
							| 29 |  | oveq2 | ⊢ ( 𝑓  =  ( 𝐴  ×  { 𝑋 } )  →  ( 𝐺  Σg  𝑓 )  =  ( 𝐺  Σg  ( 𝐴  ×  { 𝑋 } ) ) ) | 
						
							| 30 | 29 | eleq1d | ⊢ ( 𝑓  =  ( 𝐴  ×  { 𝑋 } )  →  ( ( 𝐺  Σg  𝑓 )  ∈  𝑈  ↔  ( 𝐺  Σg  ( 𝐴  ×  { 𝑋 } ) )  ∈  𝑈 ) ) | 
						
							| 31 |  | fconst6g | ⊢ ( 𝑋  ∈  𝐵  →  ( 𝐴  ×  { 𝑋 } ) : 𝐴 ⟶ 𝐵 ) | 
						
							| 32 | 8 31 | syl | ⊢ ( 𝜑  →  ( 𝐴  ×  { 𝑋 } ) : 𝐴 ⟶ 𝐵 ) | 
						
							| 33 | 2 | fvexi | ⊢ 𝐵  ∈  V | 
						
							| 34 |  | elmapg | ⊢ ( ( 𝐵  ∈  V  ∧  𝐴  ∈  Fin )  →  ( ( 𝐴  ×  { 𝑋 } )  ∈  ( 𝐵  ↑m  𝐴 )  ↔  ( 𝐴  ×  { 𝑋 } ) : 𝐴 ⟶ 𝐵 ) ) | 
						
							| 35 | 33 6 34 | sylancr | ⊢ ( 𝜑  →  ( ( 𝐴  ×  { 𝑋 } )  ∈  ( 𝐵  ↑m  𝐴 )  ↔  ( 𝐴  ×  { 𝑋 } ) : 𝐴 ⟶ 𝐵 ) ) | 
						
							| 36 | 32 35 | mpbird | ⊢ ( 𝜑  →  ( 𝐴  ×  { 𝑋 } )  ∈  ( 𝐵  ↑m  𝐴 ) ) | 
						
							| 37 |  | fconstmpt | ⊢ ( 𝐴  ×  { 𝑋 } )  =  ( 𝑘  ∈  𝐴  ↦  𝑋 ) | 
						
							| 38 | 37 | oveq2i | ⊢ ( 𝐺  Σg  ( 𝐴  ×  { 𝑋 } ) )  =  ( 𝐺  Σg  ( 𝑘  ∈  𝐴  ↦  𝑋 ) ) | 
						
							| 39 |  | cmnmnd | ⊢ ( 𝐺  ∈  CMnd  →  𝐺  ∈  Mnd ) | 
						
							| 40 | 4 39 | syl | ⊢ ( 𝜑  →  𝐺  ∈  Mnd ) | 
						
							| 41 | 2 3 | gsumconst | ⊢ ( ( 𝐺  ∈  Mnd  ∧  𝐴  ∈  Fin  ∧  𝑋  ∈  𝐵 )  →  ( 𝐺  Σg  ( 𝑘  ∈  𝐴  ↦  𝑋 ) )  =  ( ( ♯ ‘ 𝐴 )  ·  𝑋 ) ) | 
						
							| 42 | 40 6 8 41 | syl3anc | ⊢ ( 𝜑  →  ( 𝐺  Σg  ( 𝑘  ∈  𝐴  ↦  𝑋 ) )  =  ( ( ♯ ‘ 𝐴 )  ·  𝑋 ) ) | 
						
							| 43 | 38 42 | eqtrid | ⊢ ( 𝜑  →  ( 𝐺  Σg  ( 𝐴  ×  { 𝑋 } ) )  =  ( ( ♯ ‘ 𝐴 )  ·  𝑋 ) ) | 
						
							| 44 | 43 9 | eqeltrd | ⊢ ( 𝜑  →  ( 𝐺  Σg  ( 𝐴  ×  { 𝑋 } ) )  ∈  𝑈 ) | 
						
							| 45 | 30 36 44 | elrabd | ⊢ ( 𝜑  →  ( 𝐴  ×  { 𝑋 } )  ∈  { 𝑓  ∈  ( 𝐵  ↑m  𝐴 )  ∣  ( 𝐺  Σg  𝑓 )  ∈  𝑈 } ) | 
						
							| 46 |  | tg2 | ⊢ ( ( { 𝑓  ∈  ( 𝐵  ↑m  𝐴 )  ∣  ( 𝐺  Σg  𝑓 )  ∈  𝑈 }  ∈  ( topGen ‘ { 𝑥  ∣  ∃ 𝑔 ( ( 𝑔  Fn  𝐴  ∧  ∀ 𝑦  ∈  𝐴 ( 𝑔 ‘ 𝑦 )  ∈  ( ( 𝐴  ×  { 𝐽 } ) ‘ 𝑦 )  ∧  ∃ 𝑧  ∈  Fin ∀ 𝑦  ∈  ( 𝐴  ∖  𝑧 ) ( 𝑔 ‘ 𝑦 )  =  ∪  ( ( 𝐴  ×  { 𝐽 } ) ‘ 𝑦 ) )  ∧  𝑥  =  X 𝑦  ∈  𝐴 ( 𝑔 ‘ 𝑦 ) ) } )  ∧  ( 𝐴  ×  { 𝑋 } )  ∈  { 𝑓  ∈  ( 𝐵  ↑m  𝐴 )  ∣  ( 𝐺  Σg  𝑓 )  ∈  𝑈 } )  →  ∃ 𝑡  ∈  { 𝑥  ∣  ∃ 𝑔 ( ( 𝑔  Fn  𝐴  ∧  ∀ 𝑦  ∈  𝐴 ( 𝑔 ‘ 𝑦 )  ∈  ( ( 𝐴  ×  { 𝐽 } ) ‘ 𝑦 )  ∧  ∃ 𝑧  ∈  Fin ∀ 𝑦  ∈  ( 𝐴  ∖  𝑧 ) ( 𝑔 ‘ 𝑦 )  =  ∪  ( ( 𝐴  ×  { 𝐽 } ) ‘ 𝑦 ) )  ∧  𝑥  =  X 𝑦  ∈  𝐴 ( 𝑔 ‘ 𝑦 ) ) } ( ( 𝐴  ×  { 𝑋 } )  ∈  𝑡  ∧  𝑡  ⊆  { 𝑓  ∈  ( 𝐵  ↑m  𝐴 )  ∣  ( 𝐺  Σg  𝑓 )  ∈  𝑈 } ) ) | 
						
							| 47 | 28 45 46 | syl2anc | ⊢ ( 𝜑  →  ∃ 𝑡  ∈  { 𝑥  ∣  ∃ 𝑔 ( ( 𝑔  Fn  𝐴  ∧  ∀ 𝑦  ∈  𝐴 ( 𝑔 ‘ 𝑦 )  ∈  ( ( 𝐴  ×  { 𝐽 } ) ‘ 𝑦 )  ∧  ∃ 𝑧  ∈  Fin ∀ 𝑦  ∈  ( 𝐴  ∖  𝑧 ) ( 𝑔 ‘ 𝑦 )  =  ∪  ( ( 𝐴  ×  { 𝐽 } ) ‘ 𝑦 ) )  ∧  𝑥  =  X 𝑦  ∈  𝐴 ( 𝑔 ‘ 𝑦 ) ) } ( ( 𝐴  ×  { 𝑋 } )  ∈  𝑡  ∧  𝑡  ⊆  { 𝑓  ∈  ( 𝐵  ↑m  𝐴 )  ∣  ( 𝐺  Σg  𝑓 )  ∈  𝑈 } ) ) | 
						
							| 48 |  | eleq2 | ⊢ ( 𝑡  =  𝑥  →  ( ( 𝐴  ×  { 𝑋 } )  ∈  𝑡  ↔  ( 𝐴  ×  { 𝑋 } )  ∈  𝑥 ) ) | 
						
							| 49 |  | sseq1 | ⊢ ( 𝑡  =  𝑥  →  ( 𝑡  ⊆  { 𝑓  ∈  ( 𝐵  ↑m  𝐴 )  ∣  ( 𝐺  Σg  𝑓 )  ∈  𝑈 }  ↔  𝑥  ⊆  { 𝑓  ∈  ( 𝐵  ↑m  𝐴 )  ∣  ( 𝐺  Σg  𝑓 )  ∈  𝑈 } ) ) | 
						
							| 50 | 48 49 | anbi12d | ⊢ ( 𝑡  =  𝑥  →  ( ( ( 𝐴  ×  { 𝑋 } )  ∈  𝑡  ∧  𝑡  ⊆  { 𝑓  ∈  ( 𝐵  ↑m  𝐴 )  ∣  ( 𝐺  Σg  𝑓 )  ∈  𝑈 } )  ↔  ( ( 𝐴  ×  { 𝑋 } )  ∈  𝑥  ∧  𝑥  ⊆  { 𝑓  ∈  ( 𝐵  ↑m  𝐴 )  ∣  ( 𝐺  Σg  𝑓 )  ∈  𝑈 } ) ) ) | 
						
							| 51 | 50 | rexab2 | ⊢ ( ∃ 𝑡  ∈  { 𝑥  ∣  ∃ 𝑔 ( ( 𝑔  Fn  𝐴  ∧  ∀ 𝑦  ∈  𝐴 ( 𝑔 ‘ 𝑦 )  ∈  ( ( 𝐴  ×  { 𝐽 } ) ‘ 𝑦 )  ∧  ∃ 𝑧  ∈  Fin ∀ 𝑦  ∈  ( 𝐴  ∖  𝑧 ) ( 𝑔 ‘ 𝑦 )  =  ∪  ( ( 𝐴  ×  { 𝐽 } ) ‘ 𝑦 ) )  ∧  𝑥  =  X 𝑦  ∈  𝐴 ( 𝑔 ‘ 𝑦 ) ) } ( ( 𝐴  ×  { 𝑋 } )  ∈  𝑡  ∧  𝑡  ⊆  { 𝑓  ∈  ( 𝐵  ↑m  𝐴 )  ∣  ( 𝐺  Σg  𝑓 )  ∈  𝑈 } )  ↔  ∃ 𝑥 ( ∃ 𝑔 ( ( 𝑔  Fn  𝐴  ∧  ∀ 𝑦  ∈  𝐴 ( 𝑔 ‘ 𝑦 )  ∈  ( ( 𝐴  ×  { 𝐽 } ) ‘ 𝑦 )  ∧  ∃ 𝑧  ∈  Fin ∀ 𝑦  ∈  ( 𝐴  ∖  𝑧 ) ( 𝑔 ‘ 𝑦 )  =  ∪  ( ( 𝐴  ×  { 𝐽 } ) ‘ 𝑦 ) )  ∧  𝑥  =  X 𝑦  ∈  𝐴 ( 𝑔 ‘ 𝑦 ) )  ∧  ( ( 𝐴  ×  { 𝑋 } )  ∈  𝑥  ∧  𝑥  ⊆  { 𝑓  ∈  ( 𝐵  ↑m  𝐴 )  ∣  ( 𝐺  Σg  𝑓 )  ∈  𝑈 } ) ) ) | 
						
							| 52 | 47 51 | sylib | ⊢ ( 𝜑  →  ∃ 𝑥 ( ∃ 𝑔 ( ( 𝑔  Fn  𝐴  ∧  ∀ 𝑦  ∈  𝐴 ( 𝑔 ‘ 𝑦 )  ∈  ( ( 𝐴  ×  { 𝐽 } ) ‘ 𝑦 )  ∧  ∃ 𝑧  ∈  Fin ∀ 𝑦  ∈  ( 𝐴  ∖  𝑧 ) ( 𝑔 ‘ 𝑦 )  =  ∪  ( ( 𝐴  ×  { 𝐽 } ) ‘ 𝑦 ) )  ∧  𝑥  =  X 𝑦  ∈  𝐴 ( 𝑔 ‘ 𝑦 ) )  ∧  ( ( 𝐴  ×  { 𝑋 } )  ∈  𝑥  ∧  𝑥  ⊆  { 𝑓  ∈  ( 𝐵  ↑m  𝐴 )  ∣  ( 𝐺  Σg  𝑓 )  ∈  𝑈 } ) ) ) | 
						
							| 53 |  | toponuni | ⊢ ( 𝐽  ∈  ( TopOn ‘ 𝐵 )  →  𝐵  =  ∪  𝐽 ) | 
						
							| 54 | 5 17 53 | 3syl | ⊢ ( 𝜑  →  𝐵  =  ∪  𝐽 ) | 
						
							| 55 | 54 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  ( 𝑔  Fn  𝐴  ∧  ∀ 𝑦  ∈  𝐴 ( 𝑔 ‘ 𝑦 )  ∈  ( ( 𝐴  ×  { 𝐽 } ) ‘ 𝑦 ) ) )  ∧  ( ( 𝐴  ×  { 𝑋 } )  ∈  X 𝑦  ∈  𝐴 ( 𝑔 ‘ 𝑦 )  ∧  X 𝑦  ∈  𝐴 ( 𝑔 ‘ 𝑦 )  ⊆  { 𝑓  ∈  ( 𝐵  ↑m  𝐴 )  ∣  ( 𝐺  Σg  𝑓 )  ∈  𝑈 } ) )  →  𝐵  =  ∪  𝐽 ) | 
						
							| 56 | 55 | ineq1d | ⊢ ( ( ( 𝜑  ∧  ( 𝑔  Fn  𝐴  ∧  ∀ 𝑦  ∈  𝐴 ( 𝑔 ‘ 𝑦 )  ∈  ( ( 𝐴  ×  { 𝐽 } ) ‘ 𝑦 ) ) )  ∧  ( ( 𝐴  ×  { 𝑋 } )  ∈  X 𝑦  ∈  𝐴 ( 𝑔 ‘ 𝑦 )  ∧  X 𝑦  ∈  𝐴 ( 𝑔 ‘ 𝑦 )  ⊆  { 𝑓  ∈  ( 𝐵  ↑m  𝐴 )  ∣  ( 𝐺  Σg  𝑓 )  ∈  𝑈 } ) )  →  ( 𝐵  ∩  ∩  ran  𝑔 )  =  ( ∪  𝐽  ∩  ∩  ran  𝑔 ) ) | 
						
							| 57 | 19 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  ( 𝑔  Fn  𝐴  ∧  ∀ 𝑦  ∈  𝐴 ( 𝑔 ‘ 𝑦 )  ∈  ( ( 𝐴  ×  { 𝐽 } ) ‘ 𝑦 ) ) )  ∧  ( ( 𝐴  ×  { 𝑋 } )  ∈  X 𝑦  ∈  𝐴 ( 𝑔 ‘ 𝑦 )  ∧  X 𝑦  ∈  𝐴 ( 𝑔 ‘ 𝑦 )  ⊆  { 𝑓  ∈  ( 𝐵  ↑m  𝐴 )  ∣  ( 𝐺  Σg  𝑓 )  ∈  𝑈 } ) )  →  𝐽  ∈  Top ) | 
						
							| 58 |  | simplrl | ⊢ ( ( ( 𝜑  ∧  ( 𝑔  Fn  𝐴  ∧  ∀ 𝑦  ∈  𝐴 ( 𝑔 ‘ 𝑦 )  ∈  ( ( 𝐴  ×  { 𝐽 } ) ‘ 𝑦 ) ) )  ∧  ( ( 𝐴  ×  { 𝑋 } )  ∈  X 𝑦  ∈  𝐴 ( 𝑔 ‘ 𝑦 )  ∧  X 𝑦  ∈  𝐴 ( 𝑔 ‘ 𝑦 )  ⊆  { 𝑓  ∈  ( 𝐵  ↑m  𝐴 )  ∣  ( 𝐺  Σg  𝑓 )  ∈  𝑈 } ) )  →  𝑔  Fn  𝐴 ) | 
						
							| 59 |  | simplrr | ⊢ ( ( ( 𝜑  ∧  ( 𝑔  Fn  𝐴  ∧  ∀ 𝑦  ∈  𝐴 ( 𝑔 ‘ 𝑦 )  ∈  ( ( 𝐴  ×  { 𝐽 } ) ‘ 𝑦 ) ) )  ∧  ( ( 𝐴  ×  { 𝑋 } )  ∈  X 𝑦  ∈  𝐴 ( 𝑔 ‘ 𝑦 )  ∧  X 𝑦  ∈  𝐴 ( 𝑔 ‘ 𝑦 )  ⊆  { 𝑓  ∈  ( 𝐵  ↑m  𝐴 )  ∣  ( 𝐺  Σg  𝑓 )  ∈  𝑈 } ) )  →  ∀ 𝑦  ∈  𝐴 ( 𝑔 ‘ 𝑦 )  ∈  ( ( 𝐴  ×  { 𝐽 } ) ‘ 𝑦 ) ) | 
						
							| 60 |  | fvconst2g | ⊢ ( ( 𝐽  ∈  Top  ∧  𝑦  ∈  𝐴 )  →  ( ( 𝐴  ×  { 𝐽 } ) ‘ 𝑦 )  =  𝐽 ) | 
						
							| 61 | 60 | eleq2d | ⊢ ( ( 𝐽  ∈  Top  ∧  𝑦  ∈  𝐴 )  →  ( ( 𝑔 ‘ 𝑦 )  ∈  ( ( 𝐴  ×  { 𝐽 } ) ‘ 𝑦 )  ↔  ( 𝑔 ‘ 𝑦 )  ∈  𝐽 ) ) | 
						
							| 62 | 61 | ralbidva | ⊢ ( 𝐽  ∈  Top  →  ( ∀ 𝑦  ∈  𝐴 ( 𝑔 ‘ 𝑦 )  ∈  ( ( 𝐴  ×  { 𝐽 } ) ‘ 𝑦 )  ↔  ∀ 𝑦  ∈  𝐴 ( 𝑔 ‘ 𝑦 )  ∈  𝐽 ) ) | 
						
							| 63 | 57 62 | syl | ⊢ ( ( ( 𝜑  ∧  ( 𝑔  Fn  𝐴  ∧  ∀ 𝑦  ∈  𝐴 ( 𝑔 ‘ 𝑦 )  ∈  ( ( 𝐴  ×  { 𝐽 } ) ‘ 𝑦 ) ) )  ∧  ( ( 𝐴  ×  { 𝑋 } )  ∈  X 𝑦  ∈  𝐴 ( 𝑔 ‘ 𝑦 )  ∧  X 𝑦  ∈  𝐴 ( 𝑔 ‘ 𝑦 )  ⊆  { 𝑓  ∈  ( 𝐵  ↑m  𝐴 )  ∣  ( 𝐺  Σg  𝑓 )  ∈  𝑈 } ) )  →  ( ∀ 𝑦  ∈  𝐴 ( 𝑔 ‘ 𝑦 )  ∈  ( ( 𝐴  ×  { 𝐽 } ) ‘ 𝑦 )  ↔  ∀ 𝑦  ∈  𝐴 ( 𝑔 ‘ 𝑦 )  ∈  𝐽 ) ) | 
						
							| 64 | 59 63 | mpbid | ⊢ ( ( ( 𝜑  ∧  ( 𝑔  Fn  𝐴  ∧  ∀ 𝑦  ∈  𝐴 ( 𝑔 ‘ 𝑦 )  ∈  ( ( 𝐴  ×  { 𝐽 } ) ‘ 𝑦 ) ) )  ∧  ( ( 𝐴  ×  { 𝑋 } )  ∈  X 𝑦  ∈  𝐴 ( 𝑔 ‘ 𝑦 )  ∧  X 𝑦  ∈  𝐴 ( 𝑔 ‘ 𝑦 )  ⊆  { 𝑓  ∈  ( 𝐵  ↑m  𝐴 )  ∣  ( 𝐺  Σg  𝑓 )  ∈  𝑈 } ) )  →  ∀ 𝑦  ∈  𝐴 ( 𝑔 ‘ 𝑦 )  ∈  𝐽 ) | 
						
							| 65 |  | ffnfv | ⊢ ( 𝑔 : 𝐴 ⟶ 𝐽  ↔  ( 𝑔  Fn  𝐴  ∧  ∀ 𝑦  ∈  𝐴 ( 𝑔 ‘ 𝑦 )  ∈  𝐽 ) ) | 
						
							| 66 | 58 64 65 | sylanbrc | ⊢ ( ( ( 𝜑  ∧  ( 𝑔  Fn  𝐴  ∧  ∀ 𝑦  ∈  𝐴 ( 𝑔 ‘ 𝑦 )  ∈  ( ( 𝐴  ×  { 𝐽 } ) ‘ 𝑦 ) ) )  ∧  ( ( 𝐴  ×  { 𝑋 } )  ∈  X 𝑦  ∈  𝐴 ( 𝑔 ‘ 𝑦 )  ∧  X 𝑦  ∈  𝐴 ( 𝑔 ‘ 𝑦 )  ⊆  { 𝑓  ∈  ( 𝐵  ↑m  𝐴 )  ∣  ( 𝐺  Σg  𝑓 )  ∈  𝑈 } ) )  →  𝑔 : 𝐴 ⟶ 𝐽 ) | 
						
							| 67 | 66 | frnd | ⊢ ( ( ( 𝜑  ∧  ( 𝑔  Fn  𝐴  ∧  ∀ 𝑦  ∈  𝐴 ( 𝑔 ‘ 𝑦 )  ∈  ( ( 𝐴  ×  { 𝐽 } ) ‘ 𝑦 ) ) )  ∧  ( ( 𝐴  ×  { 𝑋 } )  ∈  X 𝑦  ∈  𝐴 ( 𝑔 ‘ 𝑦 )  ∧  X 𝑦  ∈  𝐴 ( 𝑔 ‘ 𝑦 )  ⊆  { 𝑓  ∈  ( 𝐵  ↑m  𝐴 )  ∣  ( 𝐺  Σg  𝑓 )  ∈  𝑈 } ) )  →  ran  𝑔  ⊆  𝐽 ) | 
						
							| 68 | 6 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  ( 𝑔  Fn  𝐴  ∧  ∀ 𝑦  ∈  𝐴 ( 𝑔 ‘ 𝑦 )  ∈  ( ( 𝐴  ×  { 𝐽 } ) ‘ 𝑦 ) ) )  ∧  ( ( 𝐴  ×  { 𝑋 } )  ∈  X 𝑦  ∈  𝐴 ( 𝑔 ‘ 𝑦 )  ∧  X 𝑦  ∈  𝐴 ( 𝑔 ‘ 𝑦 )  ⊆  { 𝑓  ∈  ( 𝐵  ↑m  𝐴 )  ∣  ( 𝐺  Σg  𝑓 )  ∈  𝑈 } ) )  →  𝐴  ∈  Fin ) | 
						
							| 69 |  | dffn4 | ⊢ ( 𝑔  Fn  𝐴  ↔  𝑔 : 𝐴 –onto→ ran  𝑔 ) | 
						
							| 70 | 58 69 | sylib | ⊢ ( ( ( 𝜑  ∧  ( 𝑔  Fn  𝐴  ∧  ∀ 𝑦  ∈  𝐴 ( 𝑔 ‘ 𝑦 )  ∈  ( ( 𝐴  ×  { 𝐽 } ) ‘ 𝑦 ) ) )  ∧  ( ( 𝐴  ×  { 𝑋 } )  ∈  X 𝑦  ∈  𝐴 ( 𝑔 ‘ 𝑦 )  ∧  X 𝑦  ∈  𝐴 ( 𝑔 ‘ 𝑦 )  ⊆  { 𝑓  ∈  ( 𝐵  ↑m  𝐴 )  ∣  ( 𝐺  Σg  𝑓 )  ∈  𝑈 } ) )  →  𝑔 : 𝐴 –onto→ ran  𝑔 ) | 
						
							| 71 |  | fofi | ⊢ ( ( 𝐴  ∈  Fin  ∧  𝑔 : 𝐴 –onto→ ran  𝑔 )  →  ran  𝑔  ∈  Fin ) | 
						
							| 72 | 68 70 71 | syl2anc | ⊢ ( ( ( 𝜑  ∧  ( 𝑔  Fn  𝐴  ∧  ∀ 𝑦  ∈  𝐴 ( 𝑔 ‘ 𝑦 )  ∈  ( ( 𝐴  ×  { 𝐽 } ) ‘ 𝑦 ) ) )  ∧  ( ( 𝐴  ×  { 𝑋 } )  ∈  X 𝑦  ∈  𝐴 ( 𝑔 ‘ 𝑦 )  ∧  X 𝑦  ∈  𝐴 ( 𝑔 ‘ 𝑦 )  ⊆  { 𝑓  ∈  ( 𝐵  ↑m  𝐴 )  ∣  ( 𝐺  Σg  𝑓 )  ∈  𝑈 } ) )  →  ran  𝑔  ∈  Fin ) | 
						
							| 73 |  | eqid | ⊢ ∪  𝐽  =  ∪  𝐽 | 
						
							| 74 | 73 | rintopn | ⊢ ( ( 𝐽  ∈  Top  ∧  ran  𝑔  ⊆  𝐽  ∧  ran  𝑔  ∈  Fin )  →  ( ∪  𝐽  ∩  ∩  ran  𝑔 )  ∈  𝐽 ) | 
						
							| 75 | 57 67 72 74 | syl3anc | ⊢ ( ( ( 𝜑  ∧  ( 𝑔  Fn  𝐴  ∧  ∀ 𝑦  ∈  𝐴 ( 𝑔 ‘ 𝑦 )  ∈  ( ( 𝐴  ×  { 𝐽 } ) ‘ 𝑦 ) ) )  ∧  ( ( 𝐴  ×  { 𝑋 } )  ∈  X 𝑦  ∈  𝐴 ( 𝑔 ‘ 𝑦 )  ∧  X 𝑦  ∈  𝐴 ( 𝑔 ‘ 𝑦 )  ⊆  { 𝑓  ∈  ( 𝐵  ↑m  𝐴 )  ∣  ( 𝐺  Σg  𝑓 )  ∈  𝑈 } ) )  →  ( ∪  𝐽  ∩  ∩  ran  𝑔 )  ∈  𝐽 ) | 
						
							| 76 | 56 75 | eqeltrd | ⊢ ( ( ( 𝜑  ∧  ( 𝑔  Fn  𝐴  ∧  ∀ 𝑦  ∈  𝐴 ( 𝑔 ‘ 𝑦 )  ∈  ( ( 𝐴  ×  { 𝐽 } ) ‘ 𝑦 ) ) )  ∧  ( ( 𝐴  ×  { 𝑋 } )  ∈  X 𝑦  ∈  𝐴 ( 𝑔 ‘ 𝑦 )  ∧  X 𝑦  ∈  𝐴 ( 𝑔 ‘ 𝑦 )  ⊆  { 𝑓  ∈  ( 𝐵  ↑m  𝐴 )  ∣  ( 𝐺  Σg  𝑓 )  ∈  𝑈 } ) )  →  ( 𝐵  ∩  ∩  ran  𝑔 )  ∈  𝐽 ) | 
						
							| 77 | 8 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  ( 𝑔  Fn  𝐴  ∧  ∀ 𝑦  ∈  𝐴 ( 𝑔 ‘ 𝑦 )  ∈  ( ( 𝐴  ×  { 𝐽 } ) ‘ 𝑦 ) ) )  ∧  ( ( 𝐴  ×  { 𝑋 } )  ∈  X 𝑦  ∈  𝐴 ( 𝑔 ‘ 𝑦 )  ∧  X 𝑦  ∈  𝐴 ( 𝑔 ‘ 𝑦 )  ⊆  { 𝑓  ∈  ( 𝐵  ↑m  𝐴 )  ∣  ( 𝐺  Σg  𝑓 )  ∈  𝑈 } ) )  →  𝑋  ∈  𝐵 ) | 
						
							| 78 |  | fconstmpt | ⊢ ( 𝐴  ×  { 𝑋 } )  =  ( 𝑦  ∈  𝐴  ↦  𝑋 ) | 
						
							| 79 |  | simprl | ⊢ ( ( ( 𝜑  ∧  ( 𝑔  Fn  𝐴  ∧  ∀ 𝑦  ∈  𝐴 ( 𝑔 ‘ 𝑦 )  ∈  ( ( 𝐴  ×  { 𝐽 } ) ‘ 𝑦 ) ) )  ∧  ( ( 𝐴  ×  { 𝑋 } )  ∈  X 𝑦  ∈  𝐴 ( 𝑔 ‘ 𝑦 )  ∧  X 𝑦  ∈  𝐴 ( 𝑔 ‘ 𝑦 )  ⊆  { 𝑓  ∈  ( 𝐵  ↑m  𝐴 )  ∣  ( 𝐺  Σg  𝑓 )  ∈  𝑈 } ) )  →  ( 𝐴  ×  { 𝑋 } )  ∈  X 𝑦  ∈  𝐴 ( 𝑔 ‘ 𝑦 ) ) | 
						
							| 80 | 78 79 | eqeltrrid | ⊢ ( ( ( 𝜑  ∧  ( 𝑔  Fn  𝐴  ∧  ∀ 𝑦  ∈  𝐴 ( 𝑔 ‘ 𝑦 )  ∈  ( ( 𝐴  ×  { 𝐽 } ) ‘ 𝑦 ) ) )  ∧  ( ( 𝐴  ×  { 𝑋 } )  ∈  X 𝑦  ∈  𝐴 ( 𝑔 ‘ 𝑦 )  ∧  X 𝑦  ∈  𝐴 ( 𝑔 ‘ 𝑦 )  ⊆  { 𝑓  ∈  ( 𝐵  ↑m  𝐴 )  ∣  ( 𝐺  Σg  𝑓 )  ∈  𝑈 } ) )  →  ( 𝑦  ∈  𝐴  ↦  𝑋 )  ∈  X 𝑦  ∈  𝐴 ( 𝑔 ‘ 𝑦 ) ) | 
						
							| 81 |  | mptelixpg | ⊢ ( 𝐴  ∈  Fin  →  ( ( 𝑦  ∈  𝐴  ↦  𝑋 )  ∈  X 𝑦  ∈  𝐴 ( 𝑔 ‘ 𝑦 )  ↔  ∀ 𝑦  ∈  𝐴 𝑋  ∈  ( 𝑔 ‘ 𝑦 ) ) ) | 
						
							| 82 | 68 81 | syl | ⊢ ( ( ( 𝜑  ∧  ( 𝑔  Fn  𝐴  ∧  ∀ 𝑦  ∈  𝐴 ( 𝑔 ‘ 𝑦 )  ∈  ( ( 𝐴  ×  { 𝐽 } ) ‘ 𝑦 ) ) )  ∧  ( ( 𝐴  ×  { 𝑋 } )  ∈  X 𝑦  ∈  𝐴 ( 𝑔 ‘ 𝑦 )  ∧  X 𝑦  ∈  𝐴 ( 𝑔 ‘ 𝑦 )  ⊆  { 𝑓  ∈  ( 𝐵  ↑m  𝐴 )  ∣  ( 𝐺  Σg  𝑓 )  ∈  𝑈 } ) )  →  ( ( 𝑦  ∈  𝐴  ↦  𝑋 )  ∈  X 𝑦  ∈  𝐴 ( 𝑔 ‘ 𝑦 )  ↔  ∀ 𝑦  ∈  𝐴 𝑋  ∈  ( 𝑔 ‘ 𝑦 ) ) ) | 
						
							| 83 | 80 82 | mpbid | ⊢ ( ( ( 𝜑  ∧  ( 𝑔  Fn  𝐴  ∧  ∀ 𝑦  ∈  𝐴 ( 𝑔 ‘ 𝑦 )  ∈  ( ( 𝐴  ×  { 𝐽 } ) ‘ 𝑦 ) ) )  ∧  ( ( 𝐴  ×  { 𝑋 } )  ∈  X 𝑦  ∈  𝐴 ( 𝑔 ‘ 𝑦 )  ∧  X 𝑦  ∈  𝐴 ( 𝑔 ‘ 𝑦 )  ⊆  { 𝑓  ∈  ( 𝐵  ↑m  𝐴 )  ∣  ( 𝐺  Σg  𝑓 )  ∈  𝑈 } ) )  →  ∀ 𝑦  ∈  𝐴 𝑋  ∈  ( 𝑔 ‘ 𝑦 ) ) | 
						
							| 84 |  | eleq2 | ⊢ ( 𝑧  =  ( 𝑔 ‘ 𝑦 )  →  ( 𝑋  ∈  𝑧  ↔  𝑋  ∈  ( 𝑔 ‘ 𝑦 ) ) ) | 
						
							| 85 | 84 | ralrn | ⊢ ( 𝑔  Fn  𝐴  →  ( ∀ 𝑧  ∈  ran  𝑔 𝑋  ∈  𝑧  ↔  ∀ 𝑦  ∈  𝐴 𝑋  ∈  ( 𝑔 ‘ 𝑦 ) ) ) | 
						
							| 86 | 58 85 | syl | ⊢ ( ( ( 𝜑  ∧  ( 𝑔  Fn  𝐴  ∧  ∀ 𝑦  ∈  𝐴 ( 𝑔 ‘ 𝑦 )  ∈  ( ( 𝐴  ×  { 𝐽 } ) ‘ 𝑦 ) ) )  ∧  ( ( 𝐴  ×  { 𝑋 } )  ∈  X 𝑦  ∈  𝐴 ( 𝑔 ‘ 𝑦 )  ∧  X 𝑦  ∈  𝐴 ( 𝑔 ‘ 𝑦 )  ⊆  { 𝑓  ∈  ( 𝐵  ↑m  𝐴 )  ∣  ( 𝐺  Σg  𝑓 )  ∈  𝑈 } ) )  →  ( ∀ 𝑧  ∈  ran  𝑔 𝑋  ∈  𝑧  ↔  ∀ 𝑦  ∈  𝐴 𝑋  ∈  ( 𝑔 ‘ 𝑦 ) ) ) | 
						
							| 87 | 83 86 | mpbird | ⊢ ( ( ( 𝜑  ∧  ( 𝑔  Fn  𝐴  ∧  ∀ 𝑦  ∈  𝐴 ( 𝑔 ‘ 𝑦 )  ∈  ( ( 𝐴  ×  { 𝐽 } ) ‘ 𝑦 ) ) )  ∧  ( ( 𝐴  ×  { 𝑋 } )  ∈  X 𝑦  ∈  𝐴 ( 𝑔 ‘ 𝑦 )  ∧  X 𝑦  ∈  𝐴 ( 𝑔 ‘ 𝑦 )  ⊆  { 𝑓  ∈  ( 𝐵  ↑m  𝐴 )  ∣  ( 𝐺  Σg  𝑓 )  ∈  𝑈 } ) )  →  ∀ 𝑧  ∈  ran  𝑔 𝑋  ∈  𝑧 ) | 
						
							| 88 |  | elrint | ⊢ ( 𝑋  ∈  ( 𝐵  ∩  ∩  ran  𝑔 )  ↔  ( 𝑋  ∈  𝐵  ∧  ∀ 𝑧  ∈  ran  𝑔 𝑋  ∈  𝑧 ) ) | 
						
							| 89 | 77 87 88 | sylanbrc | ⊢ ( ( ( 𝜑  ∧  ( 𝑔  Fn  𝐴  ∧  ∀ 𝑦  ∈  𝐴 ( 𝑔 ‘ 𝑦 )  ∈  ( ( 𝐴  ×  { 𝐽 } ) ‘ 𝑦 ) ) )  ∧  ( ( 𝐴  ×  { 𝑋 } )  ∈  X 𝑦  ∈  𝐴 ( 𝑔 ‘ 𝑦 )  ∧  X 𝑦  ∈  𝐴 ( 𝑔 ‘ 𝑦 )  ⊆  { 𝑓  ∈  ( 𝐵  ↑m  𝐴 )  ∣  ( 𝐺  Σg  𝑓 )  ∈  𝑈 } ) )  →  𝑋  ∈  ( 𝐵  ∩  ∩  ran  𝑔 ) ) | 
						
							| 90 | 33 | inex1 | ⊢ ( 𝐵  ∩  ∩  ran  𝑔 )  ∈  V | 
						
							| 91 |  | ixpconstg | ⊢ ( ( 𝐴  ∈  Fin  ∧  ( 𝐵  ∩  ∩  ran  𝑔 )  ∈  V )  →  X 𝑦  ∈  𝐴 ( 𝐵  ∩  ∩  ran  𝑔 )  =  ( ( 𝐵  ∩  ∩  ran  𝑔 )  ↑m  𝐴 ) ) | 
						
							| 92 | 68 90 91 | sylancl | ⊢ ( ( ( 𝜑  ∧  ( 𝑔  Fn  𝐴  ∧  ∀ 𝑦  ∈  𝐴 ( 𝑔 ‘ 𝑦 )  ∈  ( ( 𝐴  ×  { 𝐽 } ) ‘ 𝑦 ) ) )  ∧  ( ( 𝐴  ×  { 𝑋 } )  ∈  X 𝑦  ∈  𝐴 ( 𝑔 ‘ 𝑦 )  ∧  X 𝑦  ∈  𝐴 ( 𝑔 ‘ 𝑦 )  ⊆  { 𝑓  ∈  ( 𝐵  ↑m  𝐴 )  ∣  ( 𝐺  Σg  𝑓 )  ∈  𝑈 } ) )  →  X 𝑦  ∈  𝐴 ( 𝐵  ∩  ∩  ran  𝑔 )  =  ( ( 𝐵  ∩  ∩  ran  𝑔 )  ↑m  𝐴 ) ) | 
						
							| 93 |  | inss2 | ⊢ ( 𝐵  ∩  ∩  ran  𝑔 )  ⊆  ∩  ran  𝑔 | 
						
							| 94 |  | fnfvelrn | ⊢ ( ( 𝑔  Fn  𝐴  ∧  𝑦  ∈  𝐴 )  →  ( 𝑔 ‘ 𝑦 )  ∈  ran  𝑔 ) | 
						
							| 95 |  | intss1 | ⊢ ( ( 𝑔 ‘ 𝑦 )  ∈  ran  𝑔  →  ∩  ran  𝑔  ⊆  ( 𝑔 ‘ 𝑦 ) ) | 
						
							| 96 | 94 95 | syl | ⊢ ( ( 𝑔  Fn  𝐴  ∧  𝑦  ∈  𝐴 )  →  ∩  ran  𝑔  ⊆  ( 𝑔 ‘ 𝑦 ) ) | 
						
							| 97 | 93 96 | sstrid | ⊢ ( ( 𝑔  Fn  𝐴  ∧  𝑦  ∈  𝐴 )  →  ( 𝐵  ∩  ∩  ran  𝑔 )  ⊆  ( 𝑔 ‘ 𝑦 ) ) | 
						
							| 98 | 97 | ralrimiva | ⊢ ( 𝑔  Fn  𝐴  →  ∀ 𝑦  ∈  𝐴 ( 𝐵  ∩  ∩  ran  𝑔 )  ⊆  ( 𝑔 ‘ 𝑦 ) ) | 
						
							| 99 |  | ss2ixp | ⊢ ( ∀ 𝑦  ∈  𝐴 ( 𝐵  ∩  ∩  ran  𝑔 )  ⊆  ( 𝑔 ‘ 𝑦 )  →  X 𝑦  ∈  𝐴 ( 𝐵  ∩  ∩  ran  𝑔 )  ⊆  X 𝑦  ∈  𝐴 ( 𝑔 ‘ 𝑦 ) ) | 
						
							| 100 | 58 98 99 | 3syl | ⊢ ( ( ( 𝜑  ∧  ( 𝑔  Fn  𝐴  ∧  ∀ 𝑦  ∈  𝐴 ( 𝑔 ‘ 𝑦 )  ∈  ( ( 𝐴  ×  { 𝐽 } ) ‘ 𝑦 ) ) )  ∧  ( ( 𝐴  ×  { 𝑋 } )  ∈  X 𝑦  ∈  𝐴 ( 𝑔 ‘ 𝑦 )  ∧  X 𝑦  ∈  𝐴 ( 𝑔 ‘ 𝑦 )  ⊆  { 𝑓  ∈  ( 𝐵  ↑m  𝐴 )  ∣  ( 𝐺  Σg  𝑓 )  ∈  𝑈 } ) )  →  X 𝑦  ∈  𝐴 ( 𝐵  ∩  ∩  ran  𝑔 )  ⊆  X 𝑦  ∈  𝐴 ( 𝑔 ‘ 𝑦 ) ) | 
						
							| 101 | 92 100 | eqsstrrd | ⊢ ( ( ( 𝜑  ∧  ( 𝑔  Fn  𝐴  ∧  ∀ 𝑦  ∈  𝐴 ( 𝑔 ‘ 𝑦 )  ∈  ( ( 𝐴  ×  { 𝐽 } ) ‘ 𝑦 ) ) )  ∧  ( ( 𝐴  ×  { 𝑋 } )  ∈  X 𝑦  ∈  𝐴 ( 𝑔 ‘ 𝑦 )  ∧  X 𝑦  ∈  𝐴 ( 𝑔 ‘ 𝑦 )  ⊆  { 𝑓  ∈  ( 𝐵  ↑m  𝐴 )  ∣  ( 𝐺  Σg  𝑓 )  ∈  𝑈 } ) )  →  ( ( 𝐵  ∩  ∩  ran  𝑔 )  ↑m  𝐴 )  ⊆  X 𝑦  ∈  𝐴 ( 𝑔 ‘ 𝑦 ) ) | 
						
							| 102 |  | ssrab | ⊢ ( X 𝑦  ∈  𝐴 ( 𝑔 ‘ 𝑦 )  ⊆  { 𝑓  ∈  ( 𝐵  ↑m  𝐴 )  ∣  ( 𝐺  Σg  𝑓 )  ∈  𝑈 }  ↔  ( X 𝑦  ∈  𝐴 ( 𝑔 ‘ 𝑦 )  ⊆  ( 𝐵  ↑m  𝐴 )  ∧  ∀ 𝑓  ∈  X 𝑦  ∈  𝐴 ( 𝑔 ‘ 𝑦 ) ( 𝐺  Σg  𝑓 )  ∈  𝑈 ) ) | 
						
							| 103 | 102 | simprbi | ⊢ ( X 𝑦  ∈  𝐴 ( 𝑔 ‘ 𝑦 )  ⊆  { 𝑓  ∈  ( 𝐵  ↑m  𝐴 )  ∣  ( 𝐺  Σg  𝑓 )  ∈  𝑈 }  →  ∀ 𝑓  ∈  X 𝑦  ∈  𝐴 ( 𝑔 ‘ 𝑦 ) ( 𝐺  Σg  𝑓 )  ∈  𝑈 ) | 
						
							| 104 | 103 | ad2antll | ⊢ ( ( ( 𝜑  ∧  ( 𝑔  Fn  𝐴  ∧  ∀ 𝑦  ∈  𝐴 ( 𝑔 ‘ 𝑦 )  ∈  ( ( 𝐴  ×  { 𝐽 } ) ‘ 𝑦 ) ) )  ∧  ( ( 𝐴  ×  { 𝑋 } )  ∈  X 𝑦  ∈  𝐴 ( 𝑔 ‘ 𝑦 )  ∧  X 𝑦  ∈  𝐴 ( 𝑔 ‘ 𝑦 )  ⊆  { 𝑓  ∈  ( 𝐵  ↑m  𝐴 )  ∣  ( 𝐺  Σg  𝑓 )  ∈  𝑈 } ) )  →  ∀ 𝑓  ∈  X 𝑦  ∈  𝐴 ( 𝑔 ‘ 𝑦 ) ( 𝐺  Σg  𝑓 )  ∈  𝑈 ) | 
						
							| 105 |  | ssralv | ⊢ ( ( ( 𝐵  ∩  ∩  ran  𝑔 )  ↑m  𝐴 )  ⊆  X 𝑦  ∈  𝐴 ( 𝑔 ‘ 𝑦 )  →  ( ∀ 𝑓  ∈  X 𝑦  ∈  𝐴 ( 𝑔 ‘ 𝑦 ) ( 𝐺  Σg  𝑓 )  ∈  𝑈  →  ∀ 𝑓  ∈  ( ( 𝐵  ∩  ∩  ran  𝑔 )  ↑m  𝐴 ) ( 𝐺  Σg  𝑓 )  ∈  𝑈 ) ) | 
						
							| 106 | 101 104 105 | sylc | ⊢ ( ( ( 𝜑  ∧  ( 𝑔  Fn  𝐴  ∧  ∀ 𝑦  ∈  𝐴 ( 𝑔 ‘ 𝑦 )  ∈  ( ( 𝐴  ×  { 𝐽 } ) ‘ 𝑦 ) ) )  ∧  ( ( 𝐴  ×  { 𝑋 } )  ∈  X 𝑦  ∈  𝐴 ( 𝑔 ‘ 𝑦 )  ∧  X 𝑦  ∈  𝐴 ( 𝑔 ‘ 𝑦 )  ⊆  { 𝑓  ∈  ( 𝐵  ↑m  𝐴 )  ∣  ( 𝐺  Σg  𝑓 )  ∈  𝑈 } ) )  →  ∀ 𝑓  ∈  ( ( 𝐵  ∩  ∩  ran  𝑔 )  ↑m  𝐴 ) ( 𝐺  Σg  𝑓 )  ∈  𝑈 ) | 
						
							| 107 |  | eleq2 | ⊢ ( 𝑢  =  ( 𝐵  ∩  ∩  ran  𝑔 )  →  ( 𝑋  ∈  𝑢  ↔  𝑋  ∈  ( 𝐵  ∩  ∩  ran  𝑔 ) ) ) | 
						
							| 108 |  | oveq1 | ⊢ ( 𝑢  =  ( 𝐵  ∩  ∩  ran  𝑔 )  →  ( 𝑢  ↑m  𝐴 )  =  ( ( 𝐵  ∩  ∩  ran  𝑔 )  ↑m  𝐴 ) ) | 
						
							| 109 | 108 | raleqdv | ⊢ ( 𝑢  =  ( 𝐵  ∩  ∩  ran  𝑔 )  →  ( ∀ 𝑓  ∈  ( 𝑢  ↑m  𝐴 ) ( 𝐺  Σg  𝑓 )  ∈  𝑈  ↔  ∀ 𝑓  ∈  ( ( 𝐵  ∩  ∩  ran  𝑔 )  ↑m  𝐴 ) ( 𝐺  Σg  𝑓 )  ∈  𝑈 ) ) | 
						
							| 110 | 107 109 | anbi12d | ⊢ ( 𝑢  =  ( 𝐵  ∩  ∩  ran  𝑔 )  →  ( ( 𝑋  ∈  𝑢  ∧  ∀ 𝑓  ∈  ( 𝑢  ↑m  𝐴 ) ( 𝐺  Σg  𝑓 )  ∈  𝑈 )  ↔  ( 𝑋  ∈  ( 𝐵  ∩  ∩  ran  𝑔 )  ∧  ∀ 𝑓  ∈  ( ( 𝐵  ∩  ∩  ran  𝑔 )  ↑m  𝐴 ) ( 𝐺  Σg  𝑓 )  ∈  𝑈 ) ) ) | 
						
							| 111 | 110 | rspcev | ⊢ ( ( ( 𝐵  ∩  ∩  ran  𝑔 )  ∈  𝐽  ∧  ( 𝑋  ∈  ( 𝐵  ∩  ∩  ran  𝑔 )  ∧  ∀ 𝑓  ∈  ( ( 𝐵  ∩  ∩  ran  𝑔 )  ↑m  𝐴 ) ( 𝐺  Σg  𝑓 )  ∈  𝑈 ) )  →  ∃ 𝑢  ∈  𝐽 ( 𝑋  ∈  𝑢  ∧  ∀ 𝑓  ∈  ( 𝑢  ↑m  𝐴 ) ( 𝐺  Σg  𝑓 )  ∈  𝑈 ) ) | 
						
							| 112 | 76 89 106 111 | syl12anc | ⊢ ( ( ( 𝜑  ∧  ( 𝑔  Fn  𝐴  ∧  ∀ 𝑦  ∈  𝐴 ( 𝑔 ‘ 𝑦 )  ∈  ( ( 𝐴  ×  { 𝐽 } ) ‘ 𝑦 ) ) )  ∧  ( ( 𝐴  ×  { 𝑋 } )  ∈  X 𝑦  ∈  𝐴 ( 𝑔 ‘ 𝑦 )  ∧  X 𝑦  ∈  𝐴 ( 𝑔 ‘ 𝑦 )  ⊆  { 𝑓  ∈  ( 𝐵  ↑m  𝐴 )  ∣  ( 𝐺  Σg  𝑓 )  ∈  𝑈 } ) )  →  ∃ 𝑢  ∈  𝐽 ( 𝑋  ∈  𝑢  ∧  ∀ 𝑓  ∈  ( 𝑢  ↑m  𝐴 ) ( 𝐺  Σg  𝑓 )  ∈  𝑈 ) ) | 
						
							| 113 | 112 | ex | ⊢ ( ( 𝜑  ∧  ( 𝑔  Fn  𝐴  ∧  ∀ 𝑦  ∈  𝐴 ( 𝑔 ‘ 𝑦 )  ∈  ( ( 𝐴  ×  { 𝐽 } ) ‘ 𝑦 ) ) )  →  ( ( ( 𝐴  ×  { 𝑋 } )  ∈  X 𝑦  ∈  𝐴 ( 𝑔 ‘ 𝑦 )  ∧  X 𝑦  ∈  𝐴 ( 𝑔 ‘ 𝑦 )  ⊆  { 𝑓  ∈  ( 𝐵  ↑m  𝐴 )  ∣  ( 𝐺  Σg  𝑓 )  ∈  𝑈 } )  →  ∃ 𝑢  ∈  𝐽 ( 𝑋  ∈  𝑢  ∧  ∀ 𝑓  ∈  ( 𝑢  ↑m  𝐴 ) ( 𝐺  Σg  𝑓 )  ∈  𝑈 ) ) ) | 
						
							| 114 | 113 | 3adantr3 | ⊢ ( ( 𝜑  ∧  ( 𝑔  Fn  𝐴  ∧  ∀ 𝑦  ∈  𝐴 ( 𝑔 ‘ 𝑦 )  ∈  ( ( 𝐴  ×  { 𝐽 } ) ‘ 𝑦 )  ∧  ∃ 𝑧  ∈  Fin ∀ 𝑦  ∈  ( 𝐴  ∖  𝑧 ) ( 𝑔 ‘ 𝑦 )  =  ∪  ( ( 𝐴  ×  { 𝐽 } ) ‘ 𝑦 ) ) )  →  ( ( ( 𝐴  ×  { 𝑋 } )  ∈  X 𝑦  ∈  𝐴 ( 𝑔 ‘ 𝑦 )  ∧  X 𝑦  ∈  𝐴 ( 𝑔 ‘ 𝑦 )  ⊆  { 𝑓  ∈  ( 𝐵  ↑m  𝐴 )  ∣  ( 𝐺  Σg  𝑓 )  ∈  𝑈 } )  →  ∃ 𝑢  ∈  𝐽 ( 𝑋  ∈  𝑢  ∧  ∀ 𝑓  ∈  ( 𝑢  ↑m  𝐴 ) ( 𝐺  Σg  𝑓 )  ∈  𝑈 ) ) ) | 
						
							| 115 |  | eleq2 | ⊢ ( 𝑥  =  X 𝑦  ∈  𝐴 ( 𝑔 ‘ 𝑦 )  →  ( ( 𝐴  ×  { 𝑋 } )  ∈  𝑥  ↔  ( 𝐴  ×  { 𝑋 } )  ∈  X 𝑦  ∈  𝐴 ( 𝑔 ‘ 𝑦 ) ) ) | 
						
							| 116 |  | sseq1 | ⊢ ( 𝑥  =  X 𝑦  ∈  𝐴 ( 𝑔 ‘ 𝑦 )  →  ( 𝑥  ⊆  { 𝑓  ∈  ( 𝐵  ↑m  𝐴 )  ∣  ( 𝐺  Σg  𝑓 )  ∈  𝑈 }  ↔  X 𝑦  ∈  𝐴 ( 𝑔 ‘ 𝑦 )  ⊆  { 𝑓  ∈  ( 𝐵  ↑m  𝐴 )  ∣  ( 𝐺  Σg  𝑓 )  ∈  𝑈 } ) ) | 
						
							| 117 | 115 116 | anbi12d | ⊢ ( 𝑥  =  X 𝑦  ∈  𝐴 ( 𝑔 ‘ 𝑦 )  →  ( ( ( 𝐴  ×  { 𝑋 } )  ∈  𝑥  ∧  𝑥  ⊆  { 𝑓  ∈  ( 𝐵  ↑m  𝐴 )  ∣  ( 𝐺  Σg  𝑓 )  ∈  𝑈 } )  ↔  ( ( 𝐴  ×  { 𝑋 } )  ∈  X 𝑦  ∈  𝐴 ( 𝑔 ‘ 𝑦 )  ∧  X 𝑦  ∈  𝐴 ( 𝑔 ‘ 𝑦 )  ⊆  { 𝑓  ∈  ( 𝐵  ↑m  𝐴 )  ∣  ( 𝐺  Σg  𝑓 )  ∈  𝑈 } ) ) ) | 
						
							| 118 | 117 | imbi1d | ⊢ ( 𝑥  =  X 𝑦  ∈  𝐴 ( 𝑔 ‘ 𝑦 )  →  ( ( ( ( 𝐴  ×  { 𝑋 } )  ∈  𝑥  ∧  𝑥  ⊆  { 𝑓  ∈  ( 𝐵  ↑m  𝐴 )  ∣  ( 𝐺  Σg  𝑓 )  ∈  𝑈 } )  →  ∃ 𝑢  ∈  𝐽 ( 𝑋  ∈  𝑢  ∧  ∀ 𝑓  ∈  ( 𝑢  ↑m  𝐴 ) ( 𝐺  Σg  𝑓 )  ∈  𝑈 ) )  ↔  ( ( ( 𝐴  ×  { 𝑋 } )  ∈  X 𝑦  ∈  𝐴 ( 𝑔 ‘ 𝑦 )  ∧  X 𝑦  ∈  𝐴 ( 𝑔 ‘ 𝑦 )  ⊆  { 𝑓  ∈  ( 𝐵  ↑m  𝐴 )  ∣  ( 𝐺  Σg  𝑓 )  ∈  𝑈 } )  →  ∃ 𝑢  ∈  𝐽 ( 𝑋  ∈  𝑢  ∧  ∀ 𝑓  ∈  ( 𝑢  ↑m  𝐴 ) ( 𝐺  Σg  𝑓 )  ∈  𝑈 ) ) ) ) | 
						
							| 119 | 114 118 | syl5ibrcom | ⊢ ( ( 𝜑  ∧  ( 𝑔  Fn  𝐴  ∧  ∀ 𝑦  ∈  𝐴 ( 𝑔 ‘ 𝑦 )  ∈  ( ( 𝐴  ×  { 𝐽 } ) ‘ 𝑦 )  ∧  ∃ 𝑧  ∈  Fin ∀ 𝑦  ∈  ( 𝐴  ∖  𝑧 ) ( 𝑔 ‘ 𝑦 )  =  ∪  ( ( 𝐴  ×  { 𝐽 } ) ‘ 𝑦 ) ) )  →  ( 𝑥  =  X 𝑦  ∈  𝐴 ( 𝑔 ‘ 𝑦 )  →  ( ( ( 𝐴  ×  { 𝑋 } )  ∈  𝑥  ∧  𝑥  ⊆  { 𝑓  ∈  ( 𝐵  ↑m  𝐴 )  ∣  ( 𝐺  Σg  𝑓 )  ∈  𝑈 } )  →  ∃ 𝑢  ∈  𝐽 ( 𝑋  ∈  𝑢  ∧  ∀ 𝑓  ∈  ( 𝑢  ↑m  𝐴 ) ( 𝐺  Σg  𝑓 )  ∈  𝑈 ) ) ) ) | 
						
							| 120 | 119 | expimpd | ⊢ ( 𝜑  →  ( ( ( 𝑔  Fn  𝐴  ∧  ∀ 𝑦  ∈  𝐴 ( 𝑔 ‘ 𝑦 )  ∈  ( ( 𝐴  ×  { 𝐽 } ) ‘ 𝑦 )  ∧  ∃ 𝑧  ∈  Fin ∀ 𝑦  ∈  ( 𝐴  ∖  𝑧 ) ( 𝑔 ‘ 𝑦 )  =  ∪  ( ( 𝐴  ×  { 𝐽 } ) ‘ 𝑦 ) )  ∧  𝑥  =  X 𝑦  ∈  𝐴 ( 𝑔 ‘ 𝑦 ) )  →  ( ( ( 𝐴  ×  { 𝑋 } )  ∈  𝑥  ∧  𝑥  ⊆  { 𝑓  ∈  ( 𝐵  ↑m  𝐴 )  ∣  ( 𝐺  Σg  𝑓 )  ∈  𝑈 } )  →  ∃ 𝑢  ∈  𝐽 ( 𝑋  ∈  𝑢  ∧  ∀ 𝑓  ∈  ( 𝑢  ↑m  𝐴 ) ( 𝐺  Σg  𝑓 )  ∈  𝑈 ) ) ) ) | 
						
							| 121 | 120 | exlimdv | ⊢ ( 𝜑  →  ( ∃ 𝑔 ( ( 𝑔  Fn  𝐴  ∧  ∀ 𝑦  ∈  𝐴 ( 𝑔 ‘ 𝑦 )  ∈  ( ( 𝐴  ×  { 𝐽 } ) ‘ 𝑦 )  ∧  ∃ 𝑧  ∈  Fin ∀ 𝑦  ∈  ( 𝐴  ∖  𝑧 ) ( 𝑔 ‘ 𝑦 )  =  ∪  ( ( 𝐴  ×  { 𝐽 } ) ‘ 𝑦 ) )  ∧  𝑥  =  X 𝑦  ∈  𝐴 ( 𝑔 ‘ 𝑦 ) )  →  ( ( ( 𝐴  ×  { 𝑋 } )  ∈  𝑥  ∧  𝑥  ⊆  { 𝑓  ∈  ( 𝐵  ↑m  𝐴 )  ∣  ( 𝐺  Σg  𝑓 )  ∈  𝑈 } )  →  ∃ 𝑢  ∈  𝐽 ( 𝑋  ∈  𝑢  ∧  ∀ 𝑓  ∈  ( 𝑢  ↑m  𝐴 ) ( 𝐺  Σg  𝑓 )  ∈  𝑈 ) ) ) ) | 
						
							| 122 | 121 | impd | ⊢ ( 𝜑  →  ( ( ∃ 𝑔 ( ( 𝑔  Fn  𝐴  ∧  ∀ 𝑦  ∈  𝐴 ( 𝑔 ‘ 𝑦 )  ∈  ( ( 𝐴  ×  { 𝐽 } ) ‘ 𝑦 )  ∧  ∃ 𝑧  ∈  Fin ∀ 𝑦  ∈  ( 𝐴  ∖  𝑧 ) ( 𝑔 ‘ 𝑦 )  =  ∪  ( ( 𝐴  ×  { 𝐽 } ) ‘ 𝑦 ) )  ∧  𝑥  =  X 𝑦  ∈  𝐴 ( 𝑔 ‘ 𝑦 ) )  ∧  ( ( 𝐴  ×  { 𝑋 } )  ∈  𝑥  ∧  𝑥  ⊆  { 𝑓  ∈  ( 𝐵  ↑m  𝐴 )  ∣  ( 𝐺  Σg  𝑓 )  ∈  𝑈 } ) )  →  ∃ 𝑢  ∈  𝐽 ( 𝑋  ∈  𝑢  ∧  ∀ 𝑓  ∈  ( 𝑢  ↑m  𝐴 ) ( 𝐺  Σg  𝑓 )  ∈  𝑈 ) ) ) | 
						
							| 123 | 122 | exlimdv | ⊢ ( 𝜑  →  ( ∃ 𝑥 ( ∃ 𝑔 ( ( 𝑔  Fn  𝐴  ∧  ∀ 𝑦  ∈  𝐴 ( 𝑔 ‘ 𝑦 )  ∈  ( ( 𝐴  ×  { 𝐽 } ) ‘ 𝑦 )  ∧  ∃ 𝑧  ∈  Fin ∀ 𝑦  ∈  ( 𝐴  ∖  𝑧 ) ( 𝑔 ‘ 𝑦 )  =  ∪  ( ( 𝐴  ×  { 𝐽 } ) ‘ 𝑦 ) )  ∧  𝑥  =  X 𝑦  ∈  𝐴 ( 𝑔 ‘ 𝑦 ) )  ∧  ( ( 𝐴  ×  { 𝑋 } )  ∈  𝑥  ∧  𝑥  ⊆  { 𝑓  ∈  ( 𝐵  ↑m  𝐴 )  ∣  ( 𝐺  Σg  𝑓 )  ∈  𝑈 } ) )  →  ∃ 𝑢  ∈  𝐽 ( 𝑋  ∈  𝑢  ∧  ∀ 𝑓  ∈  ( 𝑢  ↑m  𝐴 ) ( 𝐺  Σg  𝑓 )  ∈  𝑈 ) ) ) | 
						
							| 124 | 52 123 | mpd | ⊢ ( 𝜑  →  ∃ 𝑢  ∈  𝐽 ( 𝑋  ∈  𝑢  ∧  ∀ 𝑓  ∈  ( 𝑢  ↑m  𝐴 ) ( 𝐺  Σg  𝑓 )  ∈  𝑈 ) ) |