Metamath Proof Explorer


Theorem tmslem

Description: Lemma for tmsbas , tmsds , and tmstopn . (Contributed by Mario Carneiro, 2-Sep-2015)

Ref Expression
Hypotheses tmsval.m 𝑀 = { ⟨ ( Base ‘ ndx ) , 𝑋 ⟩ , ⟨ ( dist ‘ ndx ) , 𝐷 ⟩ }
tmsval.k 𝐾 = ( toMetSp ‘ 𝐷 )
Assertion tmslem ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) → ( 𝑋 = ( Base ‘ 𝐾 ) ∧ 𝐷 = ( dist ‘ 𝐾 ) ∧ ( MetOpen ‘ 𝐷 ) = ( TopOpen ‘ 𝐾 ) ) )

Proof

Step Hyp Ref Expression
1 tmsval.m 𝑀 = { ⟨ ( Base ‘ ndx ) , 𝑋 ⟩ , ⟨ ( dist ‘ ndx ) , 𝐷 ⟩ }
2 tmsval.k 𝐾 = ( toMetSp ‘ 𝐷 )
3 elfvdm ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) → 𝑋 ∈ dom ∞Met )
4 df-ds dist = Slot 1 2
5 1nn 1 ∈ ℕ
6 2nn0 2 ∈ ℕ0
7 1nn0 1 ∈ ℕ0
8 1lt10 1 < 1 0
9 5 6 7 8 declti 1 < 1 2
10 2nn 2 ∈ ℕ
11 7 10 decnncl 1 2 ∈ ℕ
12 1 4 9 11 2strbas ( 𝑋 ∈ dom ∞Met → 𝑋 = ( Base ‘ 𝑀 ) )
13 3 12 syl ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) → 𝑋 = ( Base ‘ 𝑀 ) )
14 xmetf ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) → 𝐷 : ( 𝑋 × 𝑋 ) ⟶ ℝ* )
15 ffn ( 𝐷 : ( 𝑋 × 𝑋 ) ⟶ ℝ*𝐷 Fn ( 𝑋 × 𝑋 ) )
16 fnresdm ( 𝐷 Fn ( 𝑋 × 𝑋 ) → ( 𝐷 ↾ ( 𝑋 × 𝑋 ) ) = 𝐷 )
17 14 15 16 3syl ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) → ( 𝐷 ↾ ( 𝑋 × 𝑋 ) ) = 𝐷 )
18 1 4 9 11 2strop ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) → 𝐷 = ( dist ‘ 𝑀 ) )
19 18 reseq1d ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) → ( 𝐷 ↾ ( 𝑋 × 𝑋 ) ) = ( ( dist ‘ 𝑀 ) ↾ ( 𝑋 × 𝑋 ) ) )
20 17 19 eqtr3d ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) → 𝐷 = ( ( dist ‘ 𝑀 ) ↾ ( 𝑋 × 𝑋 ) ) )
21 1 2 tmsval ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) → 𝐾 = ( 𝑀 sSet ⟨ ( TopSet ‘ ndx ) , ( MetOpen ‘ 𝐷 ) ⟩ ) )
22 13 20 21 setsmsbas ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) → 𝑋 = ( Base ‘ 𝐾 ) )
23 13 20 21 setsmsds ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) → ( dist ‘ 𝑀 ) = ( dist ‘ 𝐾 ) )
24 18 23 eqtrd ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) → 𝐷 = ( dist ‘ 𝐾 ) )
25 prex { ⟨ ( Base ‘ ndx ) , 𝑋 ⟩ , ⟨ ( dist ‘ ndx ) , 𝐷 ⟩ } ∈ V
26 1 25 eqeltri 𝑀 ∈ V
27 26 a1i ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) → 𝑀 ∈ V )
28 13 20 21 27 setsmstopn ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) → ( MetOpen ‘ 𝐷 ) = ( TopOpen ‘ 𝐾 ) )
29 22 24 28 3jca ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) → ( 𝑋 = ( Base ‘ 𝐾 ) ∧ 𝐷 = ( dist ‘ 𝐾 ) ∧ ( MetOpen ‘ 𝐷 ) = ( TopOpen ‘ 𝐾 ) ) )