Step |
Hyp |
Ref |
Expression |
1 |
|
tmsval.m |
⊢ 𝑀 = { 〈 ( Base ‘ ndx ) , 𝑋 〉 , 〈 ( dist ‘ ndx ) , 𝐷 〉 } |
2 |
|
tmsval.k |
⊢ 𝐾 = ( toMetSp ‘ 𝐷 ) |
3 |
|
elfvdm |
⊢ ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) → 𝑋 ∈ dom ∞Met ) |
4 |
|
df-ds |
⊢ dist = Slot ; 1 2 |
5 |
|
1nn |
⊢ 1 ∈ ℕ |
6 |
|
2nn0 |
⊢ 2 ∈ ℕ0 |
7 |
|
1nn0 |
⊢ 1 ∈ ℕ0 |
8 |
|
1lt10 |
⊢ 1 < ; 1 0 |
9 |
5 6 7 8
|
declti |
⊢ 1 < ; 1 2 |
10 |
|
2nn |
⊢ 2 ∈ ℕ |
11 |
7 10
|
decnncl |
⊢ ; 1 2 ∈ ℕ |
12 |
1 4 9 11
|
2strbas |
⊢ ( 𝑋 ∈ dom ∞Met → 𝑋 = ( Base ‘ 𝑀 ) ) |
13 |
3 12
|
syl |
⊢ ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) → 𝑋 = ( Base ‘ 𝑀 ) ) |
14 |
|
xmetf |
⊢ ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) → 𝐷 : ( 𝑋 × 𝑋 ) ⟶ ℝ* ) |
15 |
|
ffn |
⊢ ( 𝐷 : ( 𝑋 × 𝑋 ) ⟶ ℝ* → 𝐷 Fn ( 𝑋 × 𝑋 ) ) |
16 |
|
fnresdm |
⊢ ( 𝐷 Fn ( 𝑋 × 𝑋 ) → ( 𝐷 ↾ ( 𝑋 × 𝑋 ) ) = 𝐷 ) |
17 |
14 15 16
|
3syl |
⊢ ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) → ( 𝐷 ↾ ( 𝑋 × 𝑋 ) ) = 𝐷 ) |
18 |
1 4 9 11
|
2strop |
⊢ ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) → 𝐷 = ( dist ‘ 𝑀 ) ) |
19 |
18
|
reseq1d |
⊢ ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) → ( 𝐷 ↾ ( 𝑋 × 𝑋 ) ) = ( ( dist ‘ 𝑀 ) ↾ ( 𝑋 × 𝑋 ) ) ) |
20 |
17 19
|
eqtr3d |
⊢ ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) → 𝐷 = ( ( dist ‘ 𝑀 ) ↾ ( 𝑋 × 𝑋 ) ) ) |
21 |
1 2
|
tmsval |
⊢ ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) → 𝐾 = ( 𝑀 sSet 〈 ( TopSet ‘ ndx ) , ( MetOpen ‘ 𝐷 ) 〉 ) ) |
22 |
13 20 21
|
setsmsbas |
⊢ ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) → 𝑋 = ( Base ‘ 𝐾 ) ) |
23 |
13 20 21
|
setsmsds |
⊢ ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) → ( dist ‘ 𝑀 ) = ( dist ‘ 𝐾 ) ) |
24 |
18 23
|
eqtrd |
⊢ ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) → 𝐷 = ( dist ‘ 𝐾 ) ) |
25 |
|
prex |
⊢ { 〈 ( Base ‘ ndx ) , 𝑋 〉 , 〈 ( dist ‘ ndx ) , 𝐷 〉 } ∈ V |
26 |
1 25
|
eqeltri |
⊢ 𝑀 ∈ V |
27 |
26
|
a1i |
⊢ ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) → 𝑀 ∈ V ) |
28 |
13 20 21 27
|
setsmstopn |
⊢ ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) → ( MetOpen ‘ 𝐷 ) = ( TopOpen ‘ 𝐾 ) ) |
29 |
22 24 28
|
3jca |
⊢ ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) → ( 𝑋 = ( Base ‘ 𝐾 ) ∧ 𝐷 = ( dist ‘ 𝐾 ) ∧ ( MetOpen ‘ 𝐷 ) = ( TopOpen ‘ 𝐾 ) ) ) |