| Step | Hyp | Ref | Expression | 
						
							| 1 |  | tmsval.m | ⊢ 𝑀  =  { 〈 ( Base ‘ ndx ) ,  𝑋 〉 ,  〈 ( dist ‘ ndx ) ,  𝐷 〉 } | 
						
							| 2 |  | tmsval.k | ⊢ 𝐾  =  ( toMetSp ‘ 𝐷 ) | 
						
							| 3 |  | elfvdm | ⊢ ( 𝐷  ∈  ( ∞Met ‘ 𝑋 )  →  𝑋  ∈  dom  ∞Met ) | 
						
							| 4 |  | basendxltdsndx | ⊢ ( Base ‘ ndx )  <  ( dist ‘ ndx ) | 
						
							| 5 |  | dsndxnn | ⊢ ( dist ‘ ndx )  ∈  ℕ | 
						
							| 6 | 1 4 5 | 2strbas1 | ⊢ ( 𝑋  ∈  dom  ∞Met  →  𝑋  =  ( Base ‘ 𝑀 ) ) | 
						
							| 7 | 3 6 | syl | ⊢ ( 𝐷  ∈  ( ∞Met ‘ 𝑋 )  →  𝑋  =  ( Base ‘ 𝑀 ) ) | 
						
							| 8 |  | xmetf | ⊢ ( 𝐷  ∈  ( ∞Met ‘ 𝑋 )  →  𝐷 : ( 𝑋  ×  𝑋 ) ⟶ ℝ* ) | 
						
							| 9 |  | ffn | ⊢ ( 𝐷 : ( 𝑋  ×  𝑋 ) ⟶ ℝ*  →  𝐷  Fn  ( 𝑋  ×  𝑋 ) ) | 
						
							| 10 |  | fnresdm | ⊢ ( 𝐷  Fn  ( 𝑋  ×  𝑋 )  →  ( 𝐷  ↾  ( 𝑋  ×  𝑋 ) )  =  𝐷 ) | 
						
							| 11 | 8 9 10 | 3syl | ⊢ ( 𝐷  ∈  ( ∞Met ‘ 𝑋 )  →  ( 𝐷  ↾  ( 𝑋  ×  𝑋 ) )  =  𝐷 ) | 
						
							| 12 |  | dsid | ⊢ dist  =  Slot  ( dist ‘ ndx ) | 
						
							| 13 | 1 4 5 12 | 2strop1 | ⊢ ( 𝐷  ∈  ( ∞Met ‘ 𝑋 )  →  𝐷  =  ( dist ‘ 𝑀 ) ) | 
						
							| 14 | 13 | reseq1d | ⊢ ( 𝐷  ∈  ( ∞Met ‘ 𝑋 )  →  ( 𝐷  ↾  ( 𝑋  ×  𝑋 ) )  =  ( ( dist ‘ 𝑀 )  ↾  ( 𝑋  ×  𝑋 ) ) ) | 
						
							| 15 | 11 14 | eqtr3d | ⊢ ( 𝐷  ∈  ( ∞Met ‘ 𝑋 )  →  𝐷  =  ( ( dist ‘ 𝑀 )  ↾  ( 𝑋  ×  𝑋 ) ) ) | 
						
							| 16 | 1 2 | tmsval | ⊢ ( 𝐷  ∈  ( ∞Met ‘ 𝑋 )  →  𝐾  =  ( 𝑀  sSet  〈 ( TopSet ‘ ndx ) ,  ( MetOpen ‘ 𝐷 ) 〉 ) ) | 
						
							| 17 | 7 15 16 | setsmsbas | ⊢ ( 𝐷  ∈  ( ∞Met ‘ 𝑋 )  →  𝑋  =  ( Base ‘ 𝐾 ) ) | 
						
							| 18 | 7 15 16 | setsmsds | ⊢ ( 𝐷  ∈  ( ∞Met ‘ 𝑋 )  →  ( dist ‘ 𝑀 )  =  ( dist ‘ 𝐾 ) ) | 
						
							| 19 | 13 18 | eqtrd | ⊢ ( 𝐷  ∈  ( ∞Met ‘ 𝑋 )  →  𝐷  =  ( dist ‘ 𝐾 ) ) | 
						
							| 20 |  | prex | ⊢ { 〈 ( Base ‘ ndx ) ,  𝑋 〉 ,  〈 ( dist ‘ ndx ) ,  𝐷 〉 }  ∈  V | 
						
							| 21 | 1 20 | eqeltri | ⊢ 𝑀  ∈  V | 
						
							| 22 | 21 | a1i | ⊢ ( 𝐷  ∈  ( ∞Met ‘ 𝑋 )  →  𝑀  ∈  V ) | 
						
							| 23 | 7 15 16 22 | setsmstopn | ⊢ ( 𝐷  ∈  ( ∞Met ‘ 𝑋 )  →  ( MetOpen ‘ 𝐷 )  =  ( TopOpen ‘ 𝐾 ) ) | 
						
							| 24 | 17 19 23 | 3jca | ⊢ ( 𝐷  ∈  ( ∞Met ‘ 𝑋 )  →  ( 𝑋  =  ( Base ‘ 𝐾 )  ∧  𝐷  =  ( dist ‘ 𝐾 )  ∧  ( MetOpen ‘ 𝐷 )  =  ( TopOpen ‘ 𝐾 ) ) ) |