| Step | Hyp | Ref | Expression | 
						
							| 1 |  | tmsbas.k | ⊢ 𝐾  =  ( toMetSp ‘ 𝐷 ) | 
						
							| 2 |  | metxmet | ⊢ ( 𝐷  ∈  ( Met ‘ 𝑋 )  →  𝐷  ∈  ( ∞Met ‘ 𝑋 ) ) | 
						
							| 3 | 1 | tmsxms | ⊢ ( 𝐷  ∈  ( ∞Met ‘ 𝑋 )  →  𝐾  ∈  ∞MetSp ) | 
						
							| 4 | 2 3 | syl | ⊢ ( 𝐷  ∈  ( Met ‘ 𝑋 )  →  𝐾  ∈  ∞MetSp ) | 
						
							| 5 | 1 | tmsds | ⊢ ( 𝐷  ∈  ( ∞Met ‘ 𝑋 )  →  𝐷  =  ( dist ‘ 𝐾 ) ) | 
						
							| 6 | 2 5 | syl | ⊢ ( 𝐷  ∈  ( Met ‘ 𝑋 )  →  𝐷  =  ( dist ‘ 𝐾 ) ) | 
						
							| 7 | 1 | tmsbas | ⊢ ( 𝐷  ∈  ( ∞Met ‘ 𝑋 )  →  𝑋  =  ( Base ‘ 𝐾 ) ) | 
						
							| 8 | 2 7 | syl | ⊢ ( 𝐷  ∈  ( Met ‘ 𝑋 )  →  𝑋  =  ( Base ‘ 𝐾 ) ) | 
						
							| 9 | 8 | fveq2d | ⊢ ( 𝐷  ∈  ( Met ‘ 𝑋 )  →  ( Met ‘ 𝑋 )  =  ( Met ‘ ( Base ‘ 𝐾 ) ) ) | 
						
							| 10 | 6 9 | eleq12d | ⊢ ( 𝐷  ∈  ( Met ‘ 𝑋 )  →  ( 𝐷  ∈  ( Met ‘ 𝑋 )  ↔  ( dist ‘ 𝐾 )  ∈  ( Met ‘ ( Base ‘ 𝐾 ) ) ) ) | 
						
							| 11 | 10 | ibi | ⊢ ( 𝐷  ∈  ( Met ‘ 𝑋 )  →  ( dist ‘ 𝐾 )  ∈  ( Met ‘ ( Base ‘ 𝐾 ) ) ) | 
						
							| 12 |  | ssid | ⊢ ( Base ‘ 𝐾 )  ⊆  ( Base ‘ 𝐾 ) | 
						
							| 13 |  | metres2 | ⊢ ( ( ( dist ‘ 𝐾 )  ∈  ( Met ‘ ( Base ‘ 𝐾 ) )  ∧  ( Base ‘ 𝐾 )  ⊆  ( Base ‘ 𝐾 ) )  →  ( ( dist ‘ 𝐾 )  ↾  ( ( Base ‘ 𝐾 )  ×  ( Base ‘ 𝐾 ) ) )  ∈  ( Met ‘ ( Base ‘ 𝐾 ) ) ) | 
						
							| 14 | 11 12 13 | sylancl | ⊢ ( 𝐷  ∈  ( Met ‘ 𝑋 )  →  ( ( dist ‘ 𝐾 )  ↾  ( ( Base ‘ 𝐾 )  ×  ( Base ‘ 𝐾 ) ) )  ∈  ( Met ‘ ( Base ‘ 𝐾 ) ) ) | 
						
							| 15 |  | eqid | ⊢ ( TopOpen ‘ 𝐾 )  =  ( TopOpen ‘ 𝐾 ) | 
						
							| 16 |  | eqid | ⊢ ( Base ‘ 𝐾 )  =  ( Base ‘ 𝐾 ) | 
						
							| 17 |  | eqid | ⊢ ( ( dist ‘ 𝐾 )  ↾  ( ( Base ‘ 𝐾 )  ×  ( Base ‘ 𝐾 ) ) )  =  ( ( dist ‘ 𝐾 )  ↾  ( ( Base ‘ 𝐾 )  ×  ( Base ‘ 𝐾 ) ) ) | 
						
							| 18 | 15 16 17 | isms | ⊢ ( 𝐾  ∈  MetSp  ↔  ( 𝐾  ∈  ∞MetSp  ∧  ( ( dist ‘ 𝐾 )  ↾  ( ( Base ‘ 𝐾 )  ×  ( Base ‘ 𝐾 ) ) )  ∈  ( Met ‘ ( Base ‘ 𝐾 ) ) ) ) | 
						
							| 19 | 4 14 18 | sylanbrc | ⊢ ( 𝐷  ∈  ( Met ‘ 𝑋 )  →  𝐾  ∈  MetSp ) |