Step |
Hyp |
Ref |
Expression |
1 |
|
tmsbas.k |
⊢ 𝐾 = ( toMetSp ‘ 𝐷 ) |
2 |
|
metxmet |
⊢ ( 𝐷 ∈ ( Met ‘ 𝑋 ) → 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ) |
3 |
1
|
tmsxms |
⊢ ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) → 𝐾 ∈ ∞MetSp ) |
4 |
2 3
|
syl |
⊢ ( 𝐷 ∈ ( Met ‘ 𝑋 ) → 𝐾 ∈ ∞MetSp ) |
5 |
1
|
tmsds |
⊢ ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) → 𝐷 = ( dist ‘ 𝐾 ) ) |
6 |
2 5
|
syl |
⊢ ( 𝐷 ∈ ( Met ‘ 𝑋 ) → 𝐷 = ( dist ‘ 𝐾 ) ) |
7 |
1
|
tmsbas |
⊢ ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) → 𝑋 = ( Base ‘ 𝐾 ) ) |
8 |
2 7
|
syl |
⊢ ( 𝐷 ∈ ( Met ‘ 𝑋 ) → 𝑋 = ( Base ‘ 𝐾 ) ) |
9 |
8
|
fveq2d |
⊢ ( 𝐷 ∈ ( Met ‘ 𝑋 ) → ( Met ‘ 𝑋 ) = ( Met ‘ ( Base ‘ 𝐾 ) ) ) |
10 |
6 9
|
eleq12d |
⊢ ( 𝐷 ∈ ( Met ‘ 𝑋 ) → ( 𝐷 ∈ ( Met ‘ 𝑋 ) ↔ ( dist ‘ 𝐾 ) ∈ ( Met ‘ ( Base ‘ 𝐾 ) ) ) ) |
11 |
10
|
ibi |
⊢ ( 𝐷 ∈ ( Met ‘ 𝑋 ) → ( dist ‘ 𝐾 ) ∈ ( Met ‘ ( Base ‘ 𝐾 ) ) ) |
12 |
|
ssid |
⊢ ( Base ‘ 𝐾 ) ⊆ ( Base ‘ 𝐾 ) |
13 |
|
metres2 |
⊢ ( ( ( dist ‘ 𝐾 ) ∈ ( Met ‘ ( Base ‘ 𝐾 ) ) ∧ ( Base ‘ 𝐾 ) ⊆ ( Base ‘ 𝐾 ) ) → ( ( dist ‘ 𝐾 ) ↾ ( ( Base ‘ 𝐾 ) × ( Base ‘ 𝐾 ) ) ) ∈ ( Met ‘ ( Base ‘ 𝐾 ) ) ) |
14 |
11 12 13
|
sylancl |
⊢ ( 𝐷 ∈ ( Met ‘ 𝑋 ) → ( ( dist ‘ 𝐾 ) ↾ ( ( Base ‘ 𝐾 ) × ( Base ‘ 𝐾 ) ) ) ∈ ( Met ‘ ( Base ‘ 𝐾 ) ) ) |
15 |
|
eqid |
⊢ ( TopOpen ‘ 𝐾 ) = ( TopOpen ‘ 𝐾 ) |
16 |
|
eqid |
⊢ ( Base ‘ 𝐾 ) = ( Base ‘ 𝐾 ) |
17 |
|
eqid |
⊢ ( ( dist ‘ 𝐾 ) ↾ ( ( Base ‘ 𝐾 ) × ( Base ‘ 𝐾 ) ) ) = ( ( dist ‘ 𝐾 ) ↾ ( ( Base ‘ 𝐾 ) × ( Base ‘ 𝐾 ) ) ) |
18 |
15 16 17
|
isms |
⊢ ( 𝐾 ∈ MetSp ↔ ( 𝐾 ∈ ∞MetSp ∧ ( ( dist ‘ 𝐾 ) ↾ ( ( Base ‘ 𝐾 ) × ( Base ‘ 𝐾 ) ) ) ∈ ( Met ‘ ( Base ‘ 𝐾 ) ) ) ) |
19 |
4 14 18
|
sylanbrc |
⊢ ( 𝐷 ∈ ( Met ‘ 𝑋 ) → 𝐾 ∈ MetSp ) |