Metamath Proof Explorer


Theorem tmstopn

Description: The topology of a constructed metric. (Contributed by Mario Carneiro, 2-Sep-2015)

Ref Expression
Hypotheses tmsbas.k 𝐾 = ( toMetSp ‘ 𝐷 )
tmstopn.j 𝐽 = ( MetOpen ‘ 𝐷 )
Assertion tmstopn ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) → 𝐽 = ( TopOpen ‘ 𝐾 ) )

Proof

Step Hyp Ref Expression
1 tmsbas.k 𝐾 = ( toMetSp ‘ 𝐷 )
2 tmstopn.j 𝐽 = ( MetOpen ‘ 𝐷 )
3 eqid { ⟨ ( Base ‘ ndx ) , 𝑋 ⟩ , ⟨ ( dist ‘ ndx ) , 𝐷 ⟩ } = { ⟨ ( Base ‘ ndx ) , 𝑋 ⟩ , ⟨ ( dist ‘ ndx ) , 𝐷 ⟩ }
4 3 1 tmslem ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) → ( 𝑋 = ( Base ‘ 𝐾 ) ∧ 𝐷 = ( dist ‘ 𝐾 ) ∧ ( MetOpen ‘ 𝐷 ) = ( TopOpen ‘ 𝐾 ) ) )
5 4 simp3d ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) → ( MetOpen ‘ 𝐷 ) = ( TopOpen ‘ 𝐾 ) )
6 2 5 syl5eq ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) → 𝐽 = ( TopOpen ‘ 𝐾 ) )