Step |
Hyp |
Ref |
Expression |
1 |
|
tmsval.m |
⊢ 𝑀 = { 〈 ( Base ‘ ndx ) , 𝑋 〉 , 〈 ( dist ‘ ndx ) , 𝐷 〉 } |
2 |
|
tmsval.k |
⊢ 𝐾 = ( toMetSp ‘ 𝐷 ) |
3 |
|
df-tms |
⊢ toMetSp = ( 𝑑 ∈ ∪ ran ∞Met ↦ ( { 〈 ( Base ‘ ndx ) , dom dom 𝑑 〉 , 〈 ( dist ‘ ndx ) , 𝑑 〉 } sSet 〈 ( TopSet ‘ ndx ) , ( MetOpen ‘ 𝑑 ) 〉 ) ) |
4 |
|
dmeq |
⊢ ( 𝑑 = 𝐷 → dom 𝑑 = dom 𝐷 ) |
5 |
4
|
dmeqd |
⊢ ( 𝑑 = 𝐷 → dom dom 𝑑 = dom dom 𝐷 ) |
6 |
|
xmetf |
⊢ ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) → 𝐷 : ( 𝑋 × 𝑋 ) ⟶ ℝ* ) |
7 |
6
|
fdmd |
⊢ ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) → dom 𝐷 = ( 𝑋 × 𝑋 ) ) |
8 |
7
|
dmeqd |
⊢ ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) → dom dom 𝐷 = dom ( 𝑋 × 𝑋 ) ) |
9 |
|
dmxpid |
⊢ dom ( 𝑋 × 𝑋 ) = 𝑋 |
10 |
8 9
|
eqtrdi |
⊢ ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) → dom dom 𝐷 = 𝑋 ) |
11 |
5 10
|
sylan9eqr |
⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑑 = 𝐷 ) → dom dom 𝑑 = 𝑋 ) |
12 |
11
|
opeq2d |
⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑑 = 𝐷 ) → 〈 ( Base ‘ ndx ) , dom dom 𝑑 〉 = 〈 ( Base ‘ ndx ) , 𝑋 〉 ) |
13 |
|
simpr |
⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑑 = 𝐷 ) → 𝑑 = 𝐷 ) |
14 |
13
|
opeq2d |
⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑑 = 𝐷 ) → 〈 ( dist ‘ ndx ) , 𝑑 〉 = 〈 ( dist ‘ ndx ) , 𝐷 〉 ) |
15 |
12 14
|
preq12d |
⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑑 = 𝐷 ) → { 〈 ( Base ‘ ndx ) , dom dom 𝑑 〉 , 〈 ( dist ‘ ndx ) , 𝑑 〉 } = { 〈 ( Base ‘ ndx ) , 𝑋 〉 , 〈 ( dist ‘ ndx ) , 𝐷 〉 } ) |
16 |
15 1
|
eqtr4di |
⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑑 = 𝐷 ) → { 〈 ( Base ‘ ndx ) , dom dom 𝑑 〉 , 〈 ( dist ‘ ndx ) , 𝑑 〉 } = 𝑀 ) |
17 |
13
|
fveq2d |
⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑑 = 𝐷 ) → ( MetOpen ‘ 𝑑 ) = ( MetOpen ‘ 𝐷 ) ) |
18 |
17
|
opeq2d |
⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑑 = 𝐷 ) → 〈 ( TopSet ‘ ndx ) , ( MetOpen ‘ 𝑑 ) 〉 = 〈 ( TopSet ‘ ndx ) , ( MetOpen ‘ 𝐷 ) 〉 ) |
19 |
16 18
|
oveq12d |
⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑑 = 𝐷 ) → ( { 〈 ( Base ‘ ndx ) , dom dom 𝑑 〉 , 〈 ( dist ‘ ndx ) , 𝑑 〉 } sSet 〈 ( TopSet ‘ ndx ) , ( MetOpen ‘ 𝑑 ) 〉 ) = ( 𝑀 sSet 〈 ( TopSet ‘ ndx ) , ( MetOpen ‘ 𝐷 ) 〉 ) ) |
20 |
|
fvssunirn |
⊢ ( ∞Met ‘ 𝑋 ) ⊆ ∪ ran ∞Met |
21 |
20
|
sseli |
⊢ ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) → 𝐷 ∈ ∪ ran ∞Met ) |
22 |
|
ovexd |
⊢ ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) → ( 𝑀 sSet 〈 ( TopSet ‘ ndx ) , ( MetOpen ‘ 𝐷 ) 〉 ) ∈ V ) |
23 |
3 19 21 22
|
fvmptd2 |
⊢ ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) → ( toMetSp ‘ 𝐷 ) = ( 𝑀 sSet 〈 ( TopSet ‘ ndx ) , ( MetOpen ‘ 𝐷 ) 〉 ) ) |
24 |
2 23
|
syl5eq |
⊢ ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) → 𝐾 = ( 𝑀 sSet 〈 ( TopSet ‘ ndx ) , ( MetOpen ‘ 𝐷 ) 〉 ) ) |